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Abstract
Let εD = v+u

√
D be the fundamental unit of Z[

√
D] with Z being the ordinary

integers, or maximal order, in the rational field Q. We prove that for any square-free
integer D > 1, with D not dividing u, there exists a prime fD such that the relative
class number HD(fD) = hf2

DD/hD = 1, where hD is the ideal class number of
Z[
√
D] and hf2

DD is the ideal class number of Z[fD
√
D], the order of index fD

in the maximal order Z[
√
D] of Q(

√
D). For the remaining case we provide a

counterexample to class number one. This completely settles an open question left
by Dirichet for any real quadratic field. This vastly generalizes recent results in the
literature and does so with chiefly results by Thomas Muir from 1874 that have long
gone unrecognized.

Keywords: Continued fractions, palindromes, Pell equations, quadratic orders,
relative class numbers.

1. Introduction
In 1856, Dirichlet showed that for certain D there exist an infinite number of fD
such that h(f 2

DD) = hD, but it remained open as to whether there exist such an fD
for each D.1 It is well-known that if D is not a perfect square then the continued

1In Cohn’s book [3, Sec. 2, p. 219], he says that “Dirichlet showed in 1856 that for certain D
there exists an infinite number of fD for which h(f2DD) = h(D). It is not known if such an fD
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fraction expansion is given by
√
D =

〈
q0; q1, . . . , q`−1, 2q0

〉
, (1.1)

where q0 = b
√
Dc and q1q2 . . . q`−1 is a palindrome, 2 where ` = `(

√
D) is the

period length of the simple continued fraction expansion of
√
D. Recently, in [8],

the authors showed that for qj = a ∈ N for all j = 1, 2, . . . , `− 1, there is a square-
free D and a prime fD for which HD(fD) = 1. This therefore covered all period
lengths ` = 1, 2, 3. However,the results in [8] are a one-line consequence of results
by Muir—see Theorem 2.1 below. We show herein that, indeed, Theorem 2.1 can
be used to include this result, namely the relative class number is one. This means
that for a prime fD then HD(fD) = hf2

DD/hD = 1, called the relative class number,
for all square-free D > 1 with D not dividing B where εD = A + B

√
D is the

fundamental unit of Q(
√
D).3

2. Preliminaries
Some basic facts on continued fractions which we will need are given as follows.
This may be found in most introductory number theory texts such as [14]. The jth
convergent for

√
D for any non-negative integer j is given by Aj

Bj
= 〈q0; q1, q2, . . . , qj〉,

where
Aj = qjAj−1 + Aj−2, Bj = qjBj−1 +Bj−2,

with A−2 = 0, A−1 = 1, B−2 = 1, and B−1 = 0. Also, and for any j ∈ N,

AjBj−1 − Aj−1Bj = (−1)j−1. (2.2)

A`−1 = q0B`−1 +B`−2, (2.3)

and4

A2
`−1 −B2

`−1D = (−1)`. (2.4)

exists for each D.”
2Indeed, Lagrange proved in 1770 that if a, b ∈ Z with 0 < b < a and a/b not a perfect square,

then there exists an ` ∈ N such that
√
a/b =

〈
q0; q1, . . . , q`−1, 2q0

〉
—see [14, Exercise 5.16, p.

231].
3It is of great interest in the number theory community as to when, for a given prime p ≡ 1

(mod 4), the fundamental unit εp = (A + B
√
p)/2 has p

∣∣ B. Mordell [18] showed that for p ≡ 5
(mod 8) this holds if and only if p divides the numerator of the (p−1)/4-th Bernoulli number. Later
Ankeny and Chowla [1] strengthened this to get the same conclusion for all p ≡ 1 (mod 4). Given
there results of this paper it would be interesting to see if, in the case D ≡ 5 (mod 8), one could
rule out p dividing B when εD = A+B

√
D ∈ Z[

√
D].

4It is a fact that the fundamental unit of Z(
√
D) for a non-square positive integer D is given by

εiD = A`−1 + B`−1
√
D and N(εD) = (−1)` where ` = `(

√
D), and i = 1, 3 where i = 3 is only

possible when D ≡ 5 (mod 8) —see [12, Theorems 2.1.3–2.1.4, pp. 51–53] .
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Now we may state the aforementioned result which Perron attributes to Muir in
1874—see [20, 3, Satz 17], which is in [19].5 We state it here in a format suitable
for our purposes.

Theorem 2.1 For a natural number ` ≥ 2, let q1, . . . , q`−1 be a palindrome. If
q0 ∈ N, then the following are equivalent.

1. For a non-square D ∈ N,
√
D =

〈
q0; q1, . . . , q`−1, 2q0

〉
. (2.5)

2. There exist integers u, v, w such that the matrix equation

`−1∏
j=1

(
qj 1
1 0

)
=

(
B v
v w

)
, (2.6)

holds. Also, vw is even6 and for some x ∈ Z,

q0 = (Bx− (−1)`vw)/2 ∈ Z (2.7)

with B = B`−1, v = B`−2, and w = A`−2 − q0B`−2 given Aj/Bj being the
jth convergent of

√
D, described in the previous section.7 Moreover, (2.6) is

satisfied,

D = q20+xv−(−1)`w2 =
(
Bx

2

)2

+

(
v − (−1)`

2
Bvw

)
x+
(
vw

2

)2

−(−1)`w2.

(2.8)

Proof: See [20] and also [10] for a more accessible and recent interpretation. 2

It is also quite worth observing another matrix sequence of values. We present this
here with proof since that proof has elements that we can isolate as an important
consequence.

Theorem 2.2 (Fundamental Unit Theorem for Quadratic Orders)
Suppose that (2.6) holds. Then

`−1∏
j=0

(
qj 1
1 0

)(
q0 1
1 0

)
=

(
DB`−1 A`−1

A`−1 B`−1

)
, (2.9)

5The case (1 +
√
D)/2 is also covered by Muir, but we will not need it here. We refer the reader

to [13] for a complete description and extended illustrations of its modern-day usage.
6Observe that if vw is odd, then there is no D, square-free or not, satisfying (2.5). For instance,

the palindrome 2, 3, 2 has B = 16, v = 7 and w = 3 in (2.7) for which we see there is no value of
x ∈ Z with q0 ∈ Z.

7Observe that Bx − (−1)`vw > 0 and this holds for x ≥ bvw/Bc + 1 when ` is even and
x ≥ −bvw/Bc when ` is odd.
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where
A2

`−1 −B2
`−1D = (−1)`,

and εD = A`−1 +B`−1

√
D is the fundamental unit of the order Z[

√
D].

Proof: Using (2.6), we get:

`−1∏
j=0

(
qj 1
1 0

)(
q0 1
1 0

)
=

(
q20B + 2q0v + w q0B + v

q0B + v B

)
, (2.10)

where B = B`−1, and by (2.3), A`−1 = q0B + v = q0B`−1 + B`−2. We now show
that upper left entries in the matrices (2.9)–(2.10) agree. By looking at D as given
in (2.8), we see that we must show

xvB − (−1)`w2B = 2q0v + w.

However, from (2.7), we deduce that we only need to verify that

v2 −Bw = (−1)`. (2.11)

We have

v2 −Bw = B2
`−2 −B`−1(A`−2 − q0B`−2) = B2

`−2 −B`−1A`−2 + q0B`−1B`−2 =

B`−2A`−1 −B`−2(B`−2 + q0B`−1) = B`−2A`−1 −B`−2A`−1 = (−1)`

where the penultimate equality follows from (2.3) and the last equality follows from
(2.2). That A`−1+B`−1

√
D is indeed the fundamental unit is discussed in Footnote

4. 2

Corollary 2.1 Given
√
D =

〈
q0; q1, . . . , q`−1, 2q0

〉
,

Bw = B`−1(A`−2 − q0B`−2) = B2
`−2 − (−1)` = v2 − (−1)`.

Proof: This is (2.11) in the proof above. 2

In [7] Friesen proved the following which is related to the above.

Theorem 2.3 (Friesen [7]) Let D ∈ N, q0 = b
√
Dc, and q1, . . . , q`−1 any palin-

drome. Then the equation
√
D =

〈
q0; q1, . . . , q`−1, 2q0

〉
,

has infinitely many square-free integers D as solutions whenever8

either (B2
`−2 − (−1)`)/B`−1 or B`−2 is even. (2.12)

8Note that from Theorem 2.1, v = B`−2,w = (B2
`−2−(−1)`)/B`−1, and since v2−(−1)` = vw

from (2.11), then wv even, so we have the condition given in Theorem 2.1.



Proof of Relative Class Number One for Almost All Real... 85

Lastly, for this section, we require the following elucidation on relative class num-
bers.

When D > 1 is squarefree, then OD = Z[
√
D] when D 6≡ 1 (mod 4), re-

spectively OD = Z[(1 +
√
D)/2] when D ≡ 1 (mod 4), is called the ring of

integers or maximal order of the real quadratic field Q(
√
D), with radicand D

and discriminant 4D, respectively D. For fD ∈ N, Of2
DD = Z[fD

√
D], respec-

tively Of2
DD = Z[fD(1 +

√
D)/2] is called an order in OD of index fD since

|OD : Of2
DD| = fD. In this case, the index fD is called the conductor of Of2

DD

in the maximal order.9 Now we look at the ideal class number relation between the
two orders, namely hD ofOD and hf2

DD ofOf2
DD. If v is a unit in an orderOf2

DD and
εf2

DD is the fundamental unit of Of2
DD, this means that v = ±εmD for some m ∈ Z.

Therefore, εf2
DD is a unit in the maximal order OD whose fundamental unit is εD.

Hence, the unit index of Of2
DD in OD is that integer ufD ∈ N such that

εf2
DD = ε

ufD
D . (2.13)

Then the following relation holds between the two class numbers:10

hf2
DD = hDψD(fD)/ufD , (2.14)

where
ψD(fD) = fD

∏
(1− (D/p)/p), (2.15)

with the product ranging over all the distinct primes p dividing fD and (∗/∗) is the
Kronecker symbol. This shows that hD | hf2D. We will be looking at when they are
equal, so it suffices to look at

HD(fD) =
hf2

DD

hD
=
ψD(fD)

ufD
, (2.16)

and it is this latter relation we shall examine throughout.

The following reduces the problem in this paper to one case and shows that a
positive density of square-free D for which the relative class number is 1 exists.

9For background details and an overview of arbitrary quadratic orders, see [12, §1.5, pp. 23–30].
10There are various formulations of the class number of an arbitrary orderOf2

D
D such as Borevich-

Shafarevich [2, Exercise 11, p. 152-153], Cox [5, Corollary 7.28, and Exercise 7.30, pp. 146-158]
(for complex quadratic orders), and Cohn [3, Theorem 2, p. 217]. It is the latter that we prefer
for our purposes here. Note that hD for square-free D will always refer to the ideal class number
of the maximal order. Furthermore, when Gauss and Dirichlet spoke in the language of quadratic
forms, later reformulated into the language of quadratic fields via Dirichlet’s introduction of ideals,
the distinction may be viewed as follows. If h′D is the cardinality of the form class group, then
h′D = hD unless D > 0 and N(εD) = 1, in which case h′D = 2hD. Also, h′D may be shown to be
the same as the so-called narrow ideal class number of OD, while hD is called the wide ideal class
number ofOD. All of this and intimate connections may be found in [12, Appendix E, pp. 347-354]
or in [15, §3.2, pp. 105–117].
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Theorem 2.4 If D is square-free and either

1. D ≡ 1 (mod 8) or,

2. D ≡ 5 (mod 8), and the fundamental unit has form εD = (a + b
√
D)/2

with ab odd,

then HD(2) = 1.

Proof: If D ≡ 1 (mod 8), then εD ∈ Z[
√
D] so ufD = 1 if fD = 2 in (2.16).

Also, since (D/2) = 1, then ψD(2) = 1 so HD(2) = 1. Thus, the problem left
open by Dirichlet is solved for square-free D ≡ 1 (mod 8).11 An interesting point
about D ≡ 5 (mod 8) and the interplay between the maximal order, or ring of
integers, OD = Z[(1 +

√
D)/2] and the order Z[

√
D] of index fD = 2 in OD is

that HD(2) = 1 if and only if [4, 1 +
√
D] is principal in Z[

√
D], and when this

does not occur then HD(2) = 3, and the latter occurs exactly when ufD = 1 and
fD = 2.12 2

Theorem 2.5 If D > 1 is a non-square integer and p > 2 is a prime not dividing
D, then uD | (p− (D/p))/2.

Proof: See Dick Lehmer’s result from 1926, given for convenient reference in his
collected works [11, Theorem 5, p. 226]. 2

Remark 2.1 The crucial importance of Theorem 2.5 is that it says, HD(p) > 1 for
all odd primes p not dividing D. This allows us to provide counterexamples to the
open question as to whether, for every square-free D > 1, there an fD > 1 with
HD(fD) = 1. First, in what follows, we show that almost all real quadratic fields
do satisfy the open question in the affirmative.

3. Relative Class Number Equality
For a given square-free D > 1, with

√
D =

〈
q0; q1, . . . , q`−1, 2q0

〉
, (3.17)

let B, v, w be given as above in what follows.

11An instance of the above is H17(2) = 1 since |Z[(1 +
√
17)/2] : Z[

√
17]| = 2 and ψ17(2) = 1

since 2(1− (17/2)/2) = 2(1/2) = 1 and u17 = 1 since ε17 = 4 +
√
17 ∈ Z[

√
17].

12Hence, the open problem left by Dirichlet is solved when D ≡ 5 (mod 8) and ufD = 3 for
fD = 2 , since HD(2) = 1 in this case. Hence, for D ≡ 1 (mod 4) we need only look at those
values D ≡ 5 (mod 8) with εD ∈ Z[

√
D] = OD—see [12, Theorem 2.1.4, p. 53]. This is all

intimately linked to the solvability of the Diophantine equation x2−Dy2 = ±4 for relatively prime
x, y—see [12, Exercise 2.1.16, p. 61] for instance. In any case, the above are all special instances
of the more general question of paramount importance in our quest, namely, when is up = 1, which
implies that p

∣∣ B`−1 when A`−1 + B`−1
√
D ∈ Z[

√
D]. This is a special case of the following

result from Lucas-Lehmer theory which will be important in what follows.
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Theorem 3.6 Given any square-free integerD > 1 and thatD does not divide B`−1

where εD = A`−1 + B`−1

√
D ∈ Z[

√
D] = OD, there exists a prime fD such that

HD(fD) = 1.13

Proof: As noted in the previous section, given any square-free integer D, the con-
tinued fraction expansion of

√
D must be of the form (3.17). Let fD be any prime

dividing D but not B = B`−1. We now show that such an fD must exist. If ` = 1,
and then by [12, Theorem 3.2.1, p. 78],D = q20+1 and εD = q0+

√
D, soB`−1 = 1,

so we may assume that ` ≥ 2. By Theorem 2.1, and Footnote 7, there is an integer
x so that (2.7) is satisfied. If x ≥ bvw/Bc + 2 when ` is even and x ≥ −bvw/Bc
when ` is odd then the following argument holds—see Footnote 7. If B > D, then
B > q20 since by definition q0 = b

√
Dc, so B > (Bx − (−1)`vw)/2)2. If ` is odd

then B > B2x2/4 forcing x = 1 and D < B ≤ 3, a contradiction. If ` is even, and
x ≥ bvw/Bc+ 2, then

B > [(B(vw/B + 1)− vw)/2]2 = B2/4,

so B ≤ 3, again a contradiction. Now since D is square-free and we have shown
that D > B, then there is a prime fD dividing D and not dividing B. Thus, by
(2.14),

HD(fD) = hf2
DD/hD = ψD(fD)/uD.

Since fD does not divide B = B`−1, then uD = fD is forced. Also, since ψD(fD) =
fD, given that fD | D, imples (D/fD) = 0, then HD(fD) = 1.

The only case remaining is for x = bvw/Bc + 1 and ` even. If every prime that
divides D also divides B, then since D is square-free, D | B, which contradicts the
hypothesis. Hence, we have shown there is always a prime dividing D that does not
divide B. 2

Corollary 3.2 (Furness and Parker [8, Theorem 2.12, p. 1403])
If D is square-free and

√
D =

〈
q0; q1, . . . , q`−1, 2q0

〉
, where qj = a ∈ N for all

j = 1, 2, . . . , `− 1, then there exists a prime fD with HD(fD) = 1.

Proof: In this case, D = n2 + r where r is a proper divisor of 2n. If a = 2n/r,
then εD = an+ 1 + a

√
D ∈ Z[

√
D]—see [12, Exercise 3.2.7, p. 85].14 2

13Observe, by the discussion in the preceding section that this theorem covers all square-free
D > 1 except those D ≡ 5 (mod 8) with ufD = 3 where fD = 2 in which case we demonstrated
that HD(2) = 1. Also, the values for which D

∣∣ B`−1 will be handled (in the negative) in what
follows.

14For the benefit of the reader, in the notation of [8], Pr/Qr is, in our notation, (2q0v + w)/B,
and is part of the proof of Theorem 2.2. The work they did to establish

D = q20 + (2q0v + w)/B
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Remark 3.2 The main objective of this paper may now be stated, namely all of the
above points to the fact that Muir’s result, and related work, is not not well-known
or acknowledged. In [13], we attempted to remedy this situation by exhibiting the
results and others with their force and power. The goal of this work is to further
that aim and show how these classical results can be used to get much deeper results
than those given in the modern setting.

4. Counterexample to the Rest
Now we provide a counterexample to the existence of relative class number one for
those D not covered by Theorem 3.6.15 Note that if D | B`−1 then it is a rare phe-
nomenon. Indeed, in [21], Stephens et all found only 8 values less than 107 withD |
B`−1. They are D ∈ {46, 430, 1817, 58254, 209991, 1752299, 3124318, 4099215}.
Now we show that H46(f46) 6= 1 for any f46 > 1.16

Theorem 4.7 17 There is no integer f46 > 1 such that H46(f46) = 1.

for the special case given in Corollary 3.2 is a simple consequence of Theorems 2.1–2.2. Further-
more, all of the values the authors consider are of the form of D given above which are ERD-types
studied extensively by this author and others, in greater generality, as delineated for instance in [12].
Also, there is no reference to the work of Muir, Perron or extensive work of other authors and trivial
proofs are given instead. Indeed, the exercise cited in the proof of Corollary 3.2 is given in greater
generality than what is proved in [8]. Without further comment, the reader should see [22] for an apt
review of [8].

15Observe that in the proof of that theorem, the only case left was where ` is even, x = bvw/Bc+1
and D

∣∣ B. In the following examples, therefore, where D
∣∣ B in each case it is verifiable that x is

indeed of this form. Of course if x is of this form that does not imply that D
∣∣ B since the theorem

took care of those cases in the affirmative. For instance, for D = 19, x = bvw/Bc + 1 = 2 with
B = 39, v = 14, w = 5, and q0 = (Bx− vw)/2 = 4.

16It is most interesting to note that the case where D
∣∣ B`−1 is closely linked to the study of

powerful numbers, those natural numbers whose canonical prime factorizations have no primes to
the first power. In other words, n is powerful if it is of the form n = a2b3. An open question in
such a study is whether there exist three consecutive powerful numbers. Indeed, in [17], we proved
that the existence of such a triple is tantamount to the existence of a non-square D ∈ N with D ≡ 7
(mod 8) and for which εkD = Tk + Uk

√
D has D

∣∣ Uk with Tk powerful for some k ∈ N. The
first such possibility is (8 + 3

√
7)114254287 which we demonstrated does not produce a powerful

triple. Erdos conjectured there are only finitely many such triples. Their existence remains an open
question—see [12, §1.6, pp. 30–39] for an overview and background. Furthermore,Q`/2 = 2 = Q6,
where Q`/2 is called the central norm, in the simple continued fraction expansion of

√
46. We have

exhaustively studied when the central norm is 2 (where ` must be even) and classified when this
occurs including a highly palatable generalization of a result of Lagrange, namely Q`/2 = 2 if and
only if A`−1 ≡ (−1)`/2 (mod D)—see [16, Theorem 4.3, Corollary 4.4, Remark 4.6, p. 781].

17Although the authors of a preprint [9], which appeared online in late 2012, had this result, this
author had it much earlier, but did not put a preprint of it online, believing that priority goes to a
truly published paper. Furthermore, the proof herein is far simpler and more revealing than that in
[9], which appeared after an initial version of this paper, with that result, had been circulated for
some time.
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Proof: First we show there is no prime f46 with H46(f46) = 1, then show that
suffices to prove the result. First we note that ` = `(

√
46) = 12 andQ`/2 = Q6 = 2.

Also,
ε46 = 24335 + 3588

√
46.

Assume there is a prime f46 = p with H46(p) = 1. Note that, as a result of the
above, ` = `(

√
46p2) must be even. Also, Q`/2 | 92p2.

If p | D, then by (2.16), H46(p) = p since the unit index up = 1 and the Kronecker
symbol (D/p) = 0 = (46/p). Therefore, we may assume that p does not divide D.
By Theorem 2.2, ε46p2 = A`−1 + B`−1

√
46p2, where ` = `(

√
46p2). By Theorem

2.5, up | (p− (46/p))/2, so

H46(p) = (p− (46/p))/up > 1,

a contradiction. Now we need only show that if there is no prime value of f46, then
there is no composite such value with H46(f46) = 1.

Let f46 = fD =
∏n

i=1 p
ai
i . Then ψD(fD) =

∏n
i=1 p

ai−1
i (pi − (D/pi)). If we set

bi = (pi − (D/pi)), then by what we have shown above, for any i = 1, 2, . . . , n,
εciD ∈ Z[

√
p2iD] where ci < bi, then uD < ψD(fD), so HD(fD) > 1. 2

Interestingly, for D = 1817 ≡ 1 (mod 8), we know from previous discussions
that HD(2) = 1. The cases where D | B`−1 and D is even can probably also be
shown to be counterexamples as with D = 46. An exhaustive search for them up
to higher bounds than those given above is yet to be accomplished. This completes
the resolution of the problem left open by Dirichlet on relative class number one.
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de Math. Pure. Appl., 2 Series, Tome 1(1856), 76-79.

[7] C. Friesen, On continued fractions of a given period, Proceed. Amer. Math.
Soc., 103(1988), 9-14.



90 Richard A. Mollin

[8] A. Furness and A.E. Parker, On Dirichlet’s conjecture and relative class num-
ber one, J. Number Thy., 132(2012), 1398-1403.

[9] A. Furness and A.E. Parker, Real quadratic fields in which every non-maximal
order has relative class number greater than one, arXiv:1211:5630 (Preprint).

[10] F. Halter-Koch, Continued fractions of given symmetric period, Fibonacci
Quart., 29(1991), 298-303.

[11] D.H. Lehmer, Selected Papers of D.H. Lehmer (Volume I), Charles Babbage
Research Centre, St. Pierre, Manitoba, Canada, (1981).

[12] R.A. Mollin, Quadratics, CRC Press, (1996).

[13] R.A. Mollin and K. Cheng, Matrices and continued fractions, Intern. Math.
Journal, 3(2003), 41-58.

[14] R.A. Mollin, Fundamental Number Theory with Applications (Second Edi-
tion), Chapman and Hall/CRC, Taylor and Francis Group, (2008).

[15] R.A. Mollin, Advanced Number Theory with Applications, CRC Press, Taylor
and Francis Group, (2010).

[16] R.A. Mollin and A. Srinivasan, Pell equations: Non-prinicpal Lagrange crite-
ria and central norms, Canad. Math. Bull., 55(2012), 774-782.

[17] R.A. Mollin and G.W. Walsh, Proper differences of non-square powerful num-
bers, C.R. Math. Rep. Acad. Sci. Canada, 8(1988), 71-76.

[18] L.J. Mordell, On a Pellian equation conjecture, Acta Arith., 6(1960), 137-144.

[19] T. Muir, The Expression of a Quadratic Surd as a Continued Fraction, J.
Maclehose, Galsgow, (1874).

[20] O. Perron, Die Lehre von den Kettenbrüchen, Bd. 1 Teubner, (1954).
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