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Abstract

In this paper, we study the Hyers-Ulam-Rassias stability of the quadratic
functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y), x⊥y in which ⊥ is
orthogonality in the sens of Rätz in modular spaces.
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1 Introduction

The stability problem of functional equations has been originally raised by S.
M. Ulam. In 1940, he posed the following problem: Give conditions in order
for a linear mapping near an approximately additive mapping to exist (see
[27]).

In 1941, this problem was solved by D. H. Hyers [7] for the first time.
Subsequently, the result of Hyers was generalized by T. Aoki [2] for additive
mappings and Th. M. Rassias [20] for linear mappings by considering an un-
bounded Cauchy difference. The paper of Th. M. Rassias [20] has provided a
lot of influences in the development of the Hyers-Ulam-Rassias stability of func-
tional equations (see [16]). During the last decades several stability problems
of functional equations have been investigated by a number of mathematicians
in various spaces, such as fuzzy normed spaces, orthogonal normed spaces and
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random normed spaces; see [3, 5, 8, 9, 15, 22, 30] and reference therein. Re-
cently, Gh. Sadeghi [23] proved the Hyers-Ulam stability of the generalized
Jensen functional equation f(rx + sy) = rg(x) + sh(x) in modular space, us-
ing the fixed point method. The theory of modulars on linear spaces and the
corresponding theory of modular linear spaces were founded by H. Nakano
[18] and were intensively developed by his mathematical school: S. Koshi, T.
Shimogaki, S. Yamamuro [10, 29] and others. Further and the most complete
development of these theories are due to W. Orlicz, S. Mazur, J. Musielak,
W. A. Luxemburg, Ph. Turpin [12, 14, 17, 26] and their collaborators. In
the present time the theory of modulars and modular spaces is extensively
applied, in particular, in the study of various W. Orlicz spaces [19] and inter-
polation theory [11], which in their turn have broad applications [13, 17]. The
importance for applications consists in the richness of the structure of mod-
ular spaces, that-besides being Banach spaces (or F−spaces in more general
setting)- are equipped with modular equivalent of norm or metric notions.

There are several orthogonality notions on a real normed spaces as Birkhoff-
James, semi-inner product, Carlsson, Singer, Roberts, Pythagorean, isosceles
and Diminnie (see, e.g., [1]). Let us recall the orthogonality space in the sense
of Rätz; cf. [21].

Suppose E is a real vector space with dimE ≥ 2 and ⊥ is a binary relation
on E with the following properties:

(O1) totality of ⊥ for zero: x⊥0, 0⊥x for all x ∈ E;
(O2) independence: if x, y ∈ E−{0}, x⊥y, then, x, y are linearly indepen-

dent;
(O3) homogeneity: if x, y ∈ E, x⊥y, then αx⊥βy for all α, β ∈ R;
(O4) the Thalesian property: if P is a 2-dimensional subspace of E. If

x ∈ P and λ ∈ R+, then there exists y0 ∈ P such that x⊥y0 and x+y0⊥λx−y0.
The pair (E,⊥) is called an orthogonality space. By an orthogonality

normed space, we mean an orthogonality space having a normed structure.
Some interesting examples of orthogonality spaces are:

(i) The trivial orthogonality on a vector space E defined by (O1), and for
nonzero elements x, y ∈ E, x⊥y if and only if x, y are linearly independent.

(ii) The ordinary orthogonality on an inner product space (E, 〈.〉) given by
x⊥y if and only if 〈x, y〉 = 0.

(iii) The Birkhoff-James orthogonality on a normed space (E, ‖.‖) defined
by x⊥y if and only if ‖x‖ ≤ ‖x+ λy‖ for all λ ∈ R.

The relation ⊥ is called symmetric if x⊥y implies that y⊥x for all x, y ∈ E.
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Clearly examples (i) and (ii) are symmetric but example (iii) is not. However,
it is remarkable to note, that a real normed space of dimension greater than
or equal to 3 is an inner product space if and only if the Birkhoff-James or-
thogonality is symmetric.

Let (E,⊥) be an orthogonality space and (G,+) be an Abelian group. A
mapping f : E → G is said to be (orthogonally) quadratic if it satisfies

f(x+ y) + f(x− y) = 2f(x) + 2f(y), x⊥y (1)

for all x, y ∈ E. The orthogonally quadratic functional equation (1), was first
investigated by Vajzović [28] when E is a Hilbert space, G is equal to C, f
is continuous and ⊥ means the Hilbert space orthogonality. Later Drlijević,
Fochi and Szabó generalized this result [4, 6, 25].
J. Sikorska [24] obtained the generalized orthogonal stability of some functional
equations.

In the present paper, we establish the Hyers-Ulam-Rassias Stability of Or-
thogonal Quadratic Functional Equation (1) in Modular spaces. Therefore, we
generalized the main of theorem 5 of [24].

2 Preliminary

In this section, we give the definitions that are important in the following.

Definition 2.1. Let X be an arbitrary vector space.
(a) A functional ρ : X → [0,∞] is called a modular if for arbitrary x, y ∈ X,

(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every scaler α with |α| = 1,
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) if and only if α + β = 1 and α, β ≥ 0,

(b) if (iii) is replaced by
(iii)’ ρ(αx+ βy) ≤ αρ(x) + βρ(y) if and only if α + β = 1 and α, β ≥ 0,

then we say that ρ is a convex modular.

A modular ρ defines a corresponding modular space, i.e., the vector space
Xρ given by

Xρ = {x ∈ X : ρ(λx)→ 0 as λ→ 0} .
Let ρ be a convex modular, the modular space Xρ can be equipped with a
norm called the Luxemburg norm, defined by

‖x‖ρ = inf
{
λ > 0 : ρ(

x

λ
) ≤ 1

}
.

A function modular is said to satisfy the ∆2−condition if there exists k > 0
such that ρ(2x) ≤ kρ(x) for all x ∈ Xρ.
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Definition 2.2. Let {xn} and x be in Xρ. Then

(i) we say {xn} is ρ−convergent to x and write xn
ρ→ x if and only if

ρ(xn − x)→ 0 as n→∞,
(ii) the sequence {xn}, with xn ∈ Xρ, is called ρ−Cauchy if ρ(xn−xm)→ 0

as m,n→∞,
(iii) a subset S of Xρ is called ρ−complete if and only if any ρ−Cauchy

sequence is ρ−convergent to an element of S.

The modular ρ has the Fatou property if and only if ρ(x) ≤ limn→∞ inf ρ(xn)
whenever the sequence {xn} is ρ−convergent to x. For further details and
proofs, we refer the reader to [17].

Remark 2.3. If x ∈ Xρ then ρ(ax) is a nondecreasing function of a ≥ 0.
Suppose that 0 < a < b, then property (iii) of definition 2.1 with y = 0 shows
that

ρ(ax) = ρ(
a

b
bx) ≤ ρ(bx).

Moreover, if ρ is convex modular on X and |α| ≤ 1 then, ρ(αx) ≤ |α|ρ(x) and
also ρ(x) ≤ 1

2
ρ(2x) ≤ k

2
ρ(x) if ρ satisfy the ∆2− condition for all x ∈ X.

Throughout this paper, N and R denote the sets of all positive integers and
all real numbers, respectively. By the notation Ep we mean E\ {0} provided
that p < 0 and E otherwise. In order to avoid some definitional problems we
also assume for the sake of this paper that 00 := 1.

3 Orthogonal Stability of Eq (1) in Modular

Spaces

In this section we assume that the convex modular ρ has the Fatou property
such that satisfies the ∆2−condition with 0 < k ≤ 2. In addition, we assume
that (Ep,⊥) denotes an orthogonality space, on the other hand, we give the
Hyers-Ulam-Rassias stability of orthogonal quadratic functional equation in
modular spaces.

Theorem 3.1. Let (Ep, ‖.‖) with dimEp ≥ 2 be a real normed linear space
with Birkhoff-James orthogonality and Xρ is ρ−complete modular space. If a
function f : Ep → Xρ satisfies

ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y)) ≤ ε(‖x‖p + ‖y‖p), (2)

for all x, y ∈ Ep with x⊥y, ε ≥ 0 and p < 2, then there exist unique quadratic
mapping Q : Ep → Xρ such that

ρ(f(x)−Q(x)) ≤

{
β+

4−2p ‖x‖
p if 0 ≤ p < 2,

β−

4−2p ‖x‖
p if p < 0,

(3)
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for all x ∈ Ep, where β+ = kα+

8
(2 + k + k.3p), β− = kα−

8
(2 + k + k.2−p),

α+ = kε
2

(2p + 22p + k + k.3p) and α− = kε
2

(2 + k + k.2−p).

Proof. Fix x ∈ Ep and choose y0, z0 ∈ Ep such that x⊥y0, x⊥z0 and y0⊥z0.
Then as well whence x+ y0⊥x− y0 and by (2) we get

ρ(f(2x) + f(2y0)− 2f(x+ y0)− 2f(x− y0)) ≤ ε(‖x+ y0‖p + ‖x− y0‖p). (4)

Then, from (2) and (4) we have

ρ(f(2x) + f(2y0)− 4f(x)− 4f(y0)) = ρ(f(2x) + f(2y0)− 2f(x+ y0)

−2f(x− y0) + 2f(x+ y0) + 2f(x− y0)− 4f(x)− 4f(y0))

≤ k

2
ρ(f(2x) + f(2y0)− 2f(x+ y0)− 2f(x− y0))

+
k2

2
ρ(f(x+ y0) + f(x− y0)− 2f(x)− 2f(y0))

≤ kε

2
{‖x+ y0‖p + ‖x− y0‖p + k(‖x‖p + ‖y0‖p)} . (5)

From the definition of the orthogonality, since x⊥y0, we derive ‖x‖ ≤ ‖x+ y0‖
and ‖x‖ ≤ ‖x− y0‖ (for λ = 1 and λ = −1, respectively), and analogously,
from x + y0⊥x − y0 we derive ‖x+ y0‖ ≤ 2 ‖x‖ and ‖x+ y0‖ ≤ 2 ‖y0‖.
From this relation and the triangle inequality we have additionally ‖y0‖ =
‖y0 + x− x‖ ≤ ‖x+ y0‖+ ‖x‖ ≤ 3 ‖x‖ , ‖x− y0‖ ≤ ‖y0‖+ ‖x‖ ≤ 4 ‖x‖ and
‖x‖ ≤ ‖x+ y0‖ ≤ 2 ‖y0‖

In case p is a non-negative real number, we have the approximation

‖x+ y0‖p ≤ 2p ‖x‖p , ‖x− y0‖p ≤ 4p ‖x‖p and ‖y0‖p ≤ 3p ‖x‖p

otherwise

‖y0‖p ≤ 2−p ‖x‖p , ‖x− y0‖p ≤ ‖x‖p and ‖x+ y0‖p ≤ ‖x‖p

Case 1: if p < 0 then (5) become

ρ(f(2x) + f(2y0)− 4f(x)− 4f(y0)) ≤ α− ‖x‖p (6)

where α− = kε
2

(2 + k + k.2−p).
In the same way, from the conditions x + z0⊥x − z0 and y0 + z0⊥y0 − z0 we
obtain

ρ(f(2x) + f(2z0)− 4f(x)− 4f(z0)) ≤ α− ‖x‖p (7)
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and

ρ(f(2y0) + f(2z0)− 4f(y0)− 4f(z0)) ≤ α− ‖y0‖p ≤ 2−pα− ‖x‖p . (8)

From (6), (7) and (8) we get

ρ(2f(2x)− 8f(x)) = ρ(f(2x) + f(2y0)− 4f(x)− 4f(y0) + f(2x) + f(2z0)−
4f(x)− 4f(z0) + 4f(y0) + 4f(z0)− f(2y0)− f(2z0))

≤ k

2
ρ(f(2x) + f(2y0)− 4f(x)− 4f(y0)

+
k

2
ρ(f(2x) + f(2z0)− 4f(x)− 4f(z0) + 4f(y0) + 4f(z0)− f(2y0)− f(2z0))

≤ kα−

2
‖x‖p +

k2

4
(α− ‖x‖p + 2−pα− ‖x‖p) ≤ kα−

4
(2 + k + 2−p.k) ‖x‖p .

Hence

ρ(f(2x)− 4f(x)) = ρ(
1

2
(2f(2x)− 8f(x)) ≤ 1

2
ρ(2f(2x)− 8f(x))

≤ k.α−

8
(2 + k + 2−pk) ‖x‖p

≤ β− ‖x‖p , (9)

for all x ∈ Ep, where β− = kα−

8
(2 + k + k.2−p). Thus

ρ(
f(2x)

4
− f(x)) = ρ(

1

4
(f(2x)− 4f(x))) ≤ 1

4
β− ‖x‖p , (10)

Replacing x by 2x in (9) we get

ρ(f(4x)− 4f(2x)) ≤ β− ‖2x‖p , (11)

for all x ∈ Ep. By (11) and (9) we have

ρ(
f(22x)

4
− 4f(x)) = ρ(

f(22x)

4
− f(2x) + f(2x)− 4f(x))

≤ 1

2
ρ(
f(22x)

2
− 2f(2x)) +

k

2
ρ(f(2x)− 4f(x))

≤ 1

4
ρ(f(22x)− 4f(2x)) +

k2

4
ρ(f(2x)− 4f(x))

≤ β−

4
‖2x‖p +

k2.β−

4
‖x‖p ≤ β−(

1

4
‖2x‖p +

k2

4
‖x‖p).

Thus

ρ(
f(22x)

42
− f(x)) = ρ(

1

4
(
f(22x)

4
− 4f(x)))

≤ β−(
1

42
‖2x‖p +

k2

42
‖x‖p). (12)
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By mathematical induction, we can easily see that

ρ(
f(2nx)

4n
− f(x)) ≤ β−

4n

n∑
i=1

k2(n−i)
∥∥2i−1x

∥∥p (13)

for all x ∈ Ep. Indeed, for n = 1 the relation (13) is true. Assume that the
relation (13) is true for n, and we show this relation rest true for n + 1, thus
we have

ρ(
f(2n+1x)

4n+1
− f(x)) ≤ 1

4
ρ(
f(2n+1x)

4n
− 4f(x))

=
1

4
ρ(
f(2n+1x)

4n
− f(2x) + f(2x)− 4f(x))

≤ k

8

[
ρ(
f(2n+1x)

4n
− f(2x)) + ρ(f(2x)− 4f(x))

]
≤ kβ−

8

[
1

4n

n∑
i=1

k2(n−i)
∥∥2ix

∥∥p + ‖x‖p
]

=
kβ−

8

1

4n

n∑
i=0

k2(n−i)
∥∥2ix

∥∥p
≤ kβ−

2

1

4n+1

n∑
i=0

k2(n−i)
∥∥2ix

∥∥p
≤ β−

4n+1

n+1∑
i=1

k2(n+1−i) ∥∥2i−1x
∥∥p ,

hence the relation (13) is true for all x ∈ Ep and n ∈ N∗. Thus

ρ(
f(2nx)

4n
− f(x)) ≤ β−

4n

n∑
i=1

k2(n−i)
∥∥2i−1x

∥∥p
≤ β−

n∑
i=1

2−2i
∥∥2i−1x

∥∥p
= β−

1− 2n(p−2)

4− 2p
‖x‖p (14)

for all x ∈ Ep. Replacing x by 2mx (with m ∈ N∗) in (14) we obtain

ρ(
f(2m+nx)

4n
− f(2mx)) ≤ β−2mp

4− 2p
(1− 2n(p−2)) ‖x‖p (15)

for all x ∈ Ep. Whence

ρ(
f(2m+nx)

4n+m
− f(2mx)

4m
) = ρ(

1

4m
(
f(2m+nx)

4n+m
− f(2mx)

4m
))

≤ β−2m(p−2)

4− 2p
(1− 2n(p−2)) ‖x‖p (16)
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for all x ∈ Ep. If m,n → ∞ we get, the sequence
{
f(2nx)

4n

}
is ρ−Cauchy se-

quence in the ρ−complete modular space Xρ. Hence
{
f(2nx)

4n

}
is ρ−convergent

in Xρ, and we well define the mapping Q(x) = limn→∞
f(2nx)

4n
from Ep into Xρ

satisfying

ρ(f(x)−Q(x)) ≤ β− ‖x‖p

4− 2p
, (17)

for all x ∈ Ep, since ρ has Fatou property. For all x, y ∈ Ep with x⊥y, by
applying (2) and (O3) we get

ρ(4−n(f(2n(x+y))+f(2n(x−y))−2f(2nx)−2f(2ny))) ≤ ε2n(p−2)(‖x‖p+‖y‖p).
(18)

If n→∞ then, we conclude that

Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y) = 0, x⊥y

for all x, y ∈ Ep and on account of the results by F. Vajzović [28] and M.
Fochi [6], Q is quadratic. To prove the uniqueness, assume Q′ : Ep → Xρ to
be another quadratic mapping satisfying (17). Then, for each x ∈ Ep and all
n ∈ N one has

ρ(Q(x)−Q′(x)) = ρ(
1

n2
(Q(nx)−Q′(nx))) ≤ 1

n2
ρ(Q(nx)−Q′(nx))

=
1

n2
ρ(Q(nx)− f(nx) + f(nx)−Q′(nx))

≤ k

n2
[ρ(Q(nx)− f(nx)) + ρ(f(nx)−Q′(nx))]

≤ knp−2

4− 2p
‖x‖p .

If n→∞ we obtain Q = Q′.
Case 2: if 0 ≤ p < 2 then (5) become

ρ(f(2x) + f(2y0)− 4f(x)− 4f(y0)) ≤ α+ ‖x‖p (19)

where α+ = kε
2

(2p + 4p + k + k.3p), and by the case 1 we have

ρ(f(2x)− 4f(x)) ≤ β+ ‖x‖p , (20)

for all x ∈ E, where β+ = kα+

8
(2 + k+ k.3p). The rest of the proof is similar to

the proof of the first case, just the constants β+ and α+ serve as β− and α−,
respectively. This completes the proof of theorem.

In the following theorem we take the integers in the set 2N := {2m : m ∈ N}.
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Theorem 3.2. Let (E, ‖.‖) with dimE ≥ 2 be a real normed linear space
with Birkhoff-James orthogonality and Xρ is ρ−complete modular space. If a
function f : E → Xρ satisfying

ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y)) ≤ ε(‖x‖p + ‖y‖p), (21)

for all x, y ∈ E with x⊥y, ε ≥ 0 and p > 2, then there exist unique quadratic
mapping Q : E → Xρ such that

ρ(f(x)−Q(x)) ≤ β+

2p − 4
‖x‖p , (22)

for all x ∈ E, where β+ = kα+

8
(2 + k+ k.3p) and α+ = kε

2
(2p + 22p + k+ k.3p).

Proof. Using Theorem 3.1, the case 0 ≤ p < 2 we have

ρ(f(2x)− 4f(x)) ≤ β+ ‖x‖p , (23)

for all x ∈ E, where β+ = kα+

8
(2 + k + k.3p) and α+ = kε

2
(2p + 22p + k + k.3p).

Replacing x by x
2

in (23) we get

ρ(f(x)− 4f(
x

2
)) ≤ β+

∥∥∥x
2

∥∥∥p . (24)

Replacing x by x
2

in (24) we obtain

ρ(f(
x

2
)− 4f(

x

22
)) ≤ β+

∥∥∥ x
22

∥∥∥p . (25)

From (24) and (25) we get

ρ(f(x)− 42f(
x

22
)) = ρ(f(x)− 4f(

x

2
) + 4f(

x

2
)− 42f(

x

22
))

≤ k

2
ρ(f(x)− 4f(

x

2
)) +

k

2
ρ(4f(

x

2
)− 42f(

x

22
))

≤ k2

4
ρ(f(x)− 4f(

x

2
)) +

k3

2
ρ(f(

x

2
)− 4f(

x

22
))

≤ k2

4
β+
∥∥∥x

2

∥∥∥p +
k4

4
β+
∥∥∥ x

22

∥∥∥p
=

β+

4
(k2
∥∥∥x

2

∥∥∥p + k4
∥∥∥ x

22

∥∥∥p) (26)

for all x ∈ E. By mathematical induction, we can easily see that

ρ(f(x)− 4nf(
x

2n
)) ≤ β+

4

n∑
i=1

k2i
∥∥∥ x

2i

∥∥∥p . (27)
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Whence

ρ(f(x)− 4nf(
x

2n
)) ≤ β+

4

n∑
i=1

k2i
∥∥∥ x

2i

∥∥∥p ≤ β+

4

n∑
i=1

2i(2−p) ‖x‖p

=
β+

2p − 4
(1− 2n(2−p)) ‖x‖p (28)

Same as the first case in the theorem 3.1, we find, for each x ∈ E the sequence{
4nf( x

2n
)
}

is ρ−Cauchy sequence in ρ−complete modular space Xρ. Hence{
4nf( x

2n
)
}

is ρ−convergent in Xρ and we well define the mapping Q(x) =
limn→∞ 4nf( x

2n
) from E into Xρ satisfying

ρ(f(x)−Q(x)) ≤ β+

2p − 4
‖x‖p , (29)

for all x ∈ E, since ρ has Fatou property. For all x, y ∈ E, with x⊥y, we
obtain

ρ(4n(f(2−n(x+y))+f(2−n(x−y))−2f(2−nx)−2f(2−ny))) ≤ ε2n(2−p)(‖x‖p+‖y‖p).
(30)

If n→∞ then, we conclude that Q(x+y)+Q(x−y)−2Q(x)−2Q(y) = 0, x⊥y
for all x, y ∈ E and on account of the results by F. Vajzović [28] and M. Fochi
[6], Q is quadratic. To prove the uniqueness, assume Q′ : E → Xρ to be
another quadratic mapping satisfying (29). Then, for each x ∈ E and for all
n ∈ 2N one has

ρ(Q(x)−Q′(x)) = ρ(n2(Q(
x

n
)−Q′( 1

n
))) ≤ k2mρ(Q(

x

22m
)−Q′( x

22m
))

≤ 22mk

2

[
ρ(Q(

x

22m
)− f(

x

22m
)) + ρ(Q′(

x

22m
)− f(

x

22m
))
]

≤ 2m(2−p)k

2
‖x‖p .

If m→∞ we obtain Q = Q′. This completes the proof of theorem.

Corollary 3.3. Let E is a real linear space with dimE ≥ 2 and Xρ is
ρ−complete modular space. If a function f : E → Xρ satisfying

ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y)) ≤ ε, (31)

for all x, y ∈ E with x⊥y and ε ≥ 0, then there exist unique quadratic mapping
Q : E → Xρ such that

ρ(f(x)−Q(x)) ≤ ε[k(k + 1)]2

24
(32)

for all x ∈ E.
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Corollary 3.4. Let (Ep, ‖.‖) with dimEp ≥ 2 be a real normed linear space
with Birkhoff-James orthogonality and (X, ‖.‖) is Banach space. If a function
f : Ep → X satisfying

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ε(‖x‖p + ‖y‖p), (33)

for all x, y ∈ Ep with x⊥y, ε ≥ 0 and p ∈ R\ {2}, then there exist unique
quadratic mapping Q : Ep → X such that

‖f(x)−Q(x)‖ ≤

{
β+sgn(p−2)

2p−4 ‖x‖p if p ∈ R+\ {2},
β−

4−2p ‖x‖
p if p < 0,

(34)

for all x ∈ Ep, where β+ = α+

4
(4 + 2.3p), β− = α−

4
(4 + 21−p), α+ = ε(2p + 22p +

2 + 2.3p) and α− = ε(4 + 21−p).

Proof. It is well known that every normed space is a modular space with the
modular ρ(x) = ‖x‖ and k = 2.

Corollary 3.5. Let E is a real linear space with dimE ≥ 2 and (X, ‖.‖) is
Banach space. If a function f : E → X satisfying

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ε, (35)

for all x, y ∈ E with x⊥y and ε ≥ 0, then there exist unique quadratic mapping
Q : E → X such that

‖f(x)−Q(x)‖ ≤ 3

2
ε (36)

for all x ∈ E.

Proof. It is well known that every normed space is a modular space with the
modular ρ(x) = ‖x‖, p = 0 and k = 2.
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