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Abstract
In this paper, we study the Hyers-Ulam-Rassias stability of the quadratic
functional equation f(x +vy) + f(x —y) = 2f(x) + 2f(y), Ly in which L is
orthogonality in the sens of Rdatz in modular spaces.
Keywords: Hyers-Ulam-Rassias stability, Orthogonality, Orthogonally qua-
dratic equation, Modular space.

1 Introduction

The stability problem of functional equations has been originally raised by S.
M. Ulam. In 1940, he posed the following problem: Give conditions in order
for a linear mapping near an approximately additive mapping to exist (see
[27]).

In 1941, this problem was solved by D. H. Hyers [7] for the first time.
Subsequently, the result of Hyers was generalized by T. Aoki [2] for additive
mappings and Th. M. Rassias [20] for linear mappings by considering an un-
bounded Cauchy difference. The paper of Th. M. Rassias [20] has provided a
lot of influences in the development of the Hyers-Ulam-Rassias stability of func-
tional equations (see [16]). During the last decades several stability problems
of functional equations have been investigated by a number of mathematicians
in various spaces, such as fuzzy normed spaces, orthogonal normed spaces and
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random normed spaces; see [3, 5, 8, 9, 15, 22, 30] and reference therein. Re-
cently, Gh. Sadeghi [23] proved the Hyers-Ulam stability of the generalized
Jensen functional equation f(rz + sy) = rg(x) + sh(z) in modular space, us-
ing the fixed point method. The theory of modulars on linear spaces and the
corresponding theory of modular linear spaces were founded by H. Nakano
[18] and were intensively developed by his mathematical school: S. Koshi, T.
Shimogaki, S. Yamamuro [10, 29] and others. Further and the most complete
development of these theories are due to W. Orlicz, S. Mazur, J. Musielak,
W. A. Luxemburg, Ph. Turpin [12, 14, 17, 26] and their collaborators. In
the present time the theory of modulars and modular spaces is extensively
applied, in particular, in the study of various W. Orlicz spaces [19] and inter-
polation theory [11], which in their turn have broad applications [13, 17]. The
importance for applications consists in the richness of the structure of mod-
ular spaces, that-besides being Banach spaces (or F'—spaces in more general
setting)- are equipped with modular equivalent of norm or metric notions.

There are several orthogonality notions on a real normed spaces as Birkhoftf-
James, semi-inner product, Carlsson, Singer, Roberts, Pythagorean, isosceles
and Diminnie (see, e.g., [1]). Let us recall the orthogonality space in the sense
of Rétz; cf. [21].

Suppose E is a real vector space with dim £ > 2 and L is a binary relation
on E with the following properties:

(O1) totality of L for zero: x 10, 0Lz for all z € F;

(02) independence: if x,y € E'— {0}, x Ly, then, z,y are linearly indepen-
dent;

(O3) homogeneity: if z,y € F, xly, then azlfy for all a, 5 € R;

(O4) the Thalesian property: if P is a 2-dimensional subspace of F. If
x € Pand A € R, then there exists yg € P such that x Lyy and x+yo LAz —yp.

The pair (F, L) is called an orthogonality space. By an orthogonality
normed space, we mean an orthogonality space having a normed structure.
Some interesting examples of orthogonality spaces are:

(i) The trivial orthogonality on a vector space E defined by (O1), and for
nonzero elements z,y € E, x 1y if and only if x, y are linearly independent.

(ii) The ordinary orthogonality on an inner product space (F, (.)) given by
zly if and only if (z,y) = 0.

(iii) The Birkhoff-James orthogonality on a normed space (FE, ||.||) defined
by zLy if and only if ||z|| < ||z + Ay|| for all A € R.

The relation L is called symmetric if z Ly implies that y Lz for all z,y € E.
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Clearly examples (i) and (ii) are symmetric but example (iii) is not. However,
it is remarkable to note, that a real normed space of dimension greater than
or equal to 3 is an inner product space if and only if the Birkhoff-James or-
thogonality is symmetric.

Let (F, L) be an orthogonality space and (G, +) be an Abelian group. A
mapping f : £ — G is said to be (orthogonally) quadratic if it satisfies

flx+y) + flz—y) =2f(2) +2f(y), zly (1)

for all ,y € E. The orthogonally quadratic functional equation (1), was first
investigated by Vajzovié¢ [28] when E is a Hilbert space, G is equal to C, f
is continuous and 1 means the Hilbert space orthogonality. Later Drlijevié,
Fochi and Szabé generalized this result [4, 6, 25].

J. Sikorska [24] obtained the generalized orthogonal stability of some functional
equations.

In the present paper, we establish the Hyers-Ulam-Rassias Stability of Or-
thogonal Quadratic Functional Equation (1) in Modular spaces. Therefore, we
generalized the main of theorem 5 of [24].

2 Preliminary

In this section, we give the definitions that are important in the following.

Definition 2.1. Let X be an arbitrary vector space.

(a) A functional p : X — [0,00] is called a modular if for arbitrary x,y € X,

(1) p(x) = 0 if and only if = 0,

(i1) p(ax) = p(z) for every scaler o with |a] = 1,

(iii) p(ax + By) < p(z) + p(y) if and only if a + =1 and a, > 0,
(b) if (iii) is replaced by

(ii1)” pax + By) < ap(x) + Bp(y) if and only if a+ =1 and a, § > 0,
then we say that p is a convex modular.

A modular p defines a corresponding modular space, i.e., the vector space
X, given by
X,={zx e X:p(Axr) > 0as A — 0}.
Let p be a convex modular, the modular space X, can be equipped with a
norm called the Luxemburg norm, defined by

. xXr
|z, = inf {)\ >0:p(35) < 1}.

A function modular is said to satisfy the As—condition if there exists £ > 0
such that p(2z) < kp(z) for all z € X,
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Definition 2.2. Let {z,} and x be in X,. Then
(i) we say {x,} is p—convergent to x and write T, - x if and only if
p(x, —x) = 0 asn — oo,
(ii) the sequence {x,}, with x,, € X,, is called p— Cauchy if p(x, —2m) — 0
as m,n — oo,
(iii) a subset S of X, is called p—complete if and only if any p— Cauchy
sequence is p—convergent to an element of S.

The modular p has the Fatou property if and only if p(z) < lim,,_, inf p(x,,)
whenever the sequence {x,} is p—convergent to x. For further details and
proofs, we refer the reader to [17].

Remark 2.3. If x € X, then p(ax) is a nondecreasing function of a > 0.
Suppose that 0 < a < b, then property (iii) of definition 2.1 with y = 0 shows
that

plaz) = p(be) < p(ba).

Moreover, if p is convex modular on X and |o| < 1 then, p(az) < |a|p(z) and
also p(z) < 1p(2z) < Ep(x) if p satisfy the As— condition for all v € X.

Throughout this paper, N and R denote the sets of all positive integers and
all real numbers, respectively. By the notation E, we mean E\ {0} provided
that p < 0 and E otherwise. In order to avoid some definitional problems we
also assume for the sake of this paper that 0° := 1.

3 Orthogonal Stability of Eq (1) in Modular
Spaces

In this section we assume that the convex modular p has the Fatou property
such that satisfies the As—condition with 0 < & < 2. In addition, we assume
that (E,, L) denotes an orthogonality space, on the other hand, we give the
Hyers-Ulam-Rassias stability of orthogonal quadratic functional equation in
modular spaces.

Theorem 3.1. Let (E,,|.||) with dim E, > 2 be a real normed linear space
with Birkhoff-James orthogonality and X, is p—complete modular space. If a
function f : E, — X, satisfies

p(f(x+y) + flz —y) = 2f(z) = 2f(y)) < e(ll=]” + lly]I"), (2)

forall z,y € E, with xly, e > 0 and p < 2, then there exist unique quadratic
mapping Q : B, — X, such that

Bt P
5 llzll” ifo<p<2,
S { z =" if p <0,

4—-2pP

(3)
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for all x € E,, where Bt = 52 + k + k.37), 8~ = 22+ k + k.277),
af =E2P 422 4 k4 £3P) and a” =2+ k+ k27P).

Proof. Fix x € E, and choose yy, 29 € E, such that x_Lyy, v1zy and yoLz.
Then as well whence = + yo_Lz — yo and by (2) we get

p(f(22) + f(2y0) = 2/ (x + o) — 2f (x — o)) < €(llz + ol” + llz — wolI")- (4)

Then, from (2) and (4) we have

p(f(22) + f(2y0) — 4f(x) — 4f(yo)) = p(f(22) + f(2y0) — 2f (7 + o)
flx —yo) +2f(x+yo) +2f(x — o) — 4f(x) —4f(w0))

< gp(f(m;) + f(290) — 2 (x + yo) — 2 (x — yo))
+%2P(f(:c +y0) + f(z —yo) — 2/ (x) — 2f (%))
< g{nx +goll” + [z = woll” + k(=] + lwoll”)} (5)

From the definition of the orthogonality, since x_Lyg, we derive ||z|| < ||z + yo|
and ||z|| < ||z — yol| (for A = 1 and XA = —1, respectively), and analogously,
from = + yolx — yo we derive ||z + ol < 2||z| and |z 4+ wol < 2/||woll-
From this relation and the triangle inequality we have additionally ||yo| =
lyo + 2 — 2|l < llz + ol + =l < 3[zll, [l —woll < llyoll + llz[] < 4[] and
2]l < llz + yoll < 2]lyoll

In case p is a non-negative real number, we have the approximation

2+ woll” < 212", llz = woll” < 47 [|z[|” and [Jyol” < 3 [l”
otherwise
lyoll” < 277 [lz[|”, [lz — woll” < [[z]|” and ||z + yol|” < [|=[”
Case 1: if p < 0 then (5) become
p(f(2x) + f(2y0) — Af () — 4f(yo)) < a [J[|” (6)

where o~ = E(2+ k 4+ £.277).
In the same way, from the conditions = + 2y Lz — zg and yo + 20 Lyg — 29 we

obtain

p(f(2z) + f(220) — 4f(z) —4f(20)) < a” [l (7)
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and
p(f(2y0) + f(220) — 4f (o) — 4 (20)) < a” [lyoll” < 27Pa™ [lz]”. (8)
From (6), (7) and (8) we get

(2f(237) —8f(x)) = p(f(2z) + f(2y0) — 4f(x) — 4f(yo) + f(22) + f(220) —
4f(x) —4f(z0) +4f(yo) +4f(20) — f(250) — f(220))

< Ep(7(2x) + F(2u0) — 4/(2) — 47 (w0)
PR (20) + f(220) — 47 () — 47 (z0) + 47 () + 4/ (z0) — (20) — [(220)
< B0 el + 2 (o P + 2P0 al?) < B2 @4 k270 ) el
Hence
p(f(20) = 4f(@) = pl5(2f(2r) — 8f(x) < 5p(2/(21) ~ 8f(x))
< k8(2+k+2 PR) [l2]|”
< B el (9
for all x € E,, where 7 = %(2 + k + k.27P). Thus
o280  pla)) = o (r(r) — 47(@)) < 7 Nl (10)
Replacing x by 2z in (9) we get
pl(f(42) — 4 (22)) < - |2 (1)
for all € E,. By (11) and (9) we have
oEED apay = oD 2n) 4 p2e) — ap(a)
< 2oPZD ap)) + Ep(pian) - 4@)
< olf(2%) — 4f(2n)) + %pu(zx) ~4f(2))
< Popanl + 2 el < 5 2l + 2 i),
Thus
e I CCACLURYI))

S T
< (55 2l + 55 2. (12
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By mathematical induction, we can easily see that

for all z € E,. Indeed, for n = 1 the relatlon (13) is true. Assume that the
relation (13) is true for n, and we show this relation rest true for n 4 1, thus
we have

n+1 1 2n+1
LDy < Lo LD i)
n+1
= D o)+ 0 -4 @)
n+1
< &[22 - peoy+ atseo) - 1100
kB~ |1 N v
o
kB~ 1 ) leyi (|2
- %E;km—wumu
KB 1 R a(nei) (i (P
< S R 2]
_ n+l
<

B 2(n+1-i) |[oi—1,.[|P
qn+1 Zk( M2 )",
i=1
hence the relation (13) is true for all = € E, and n € N*. Thus

8D pay) < oSk g
=1

S 6—22—21' Hzi—leP

1 — 2"@ 2
— 14
e~ lal (14)
for all z € E,. Replacing x by 2™z (with m € N*) in (14) we obtain
f 2m+nx . 6— m (i
p(PETD iy < D2 (1 gt e (15)
for all € E,. Whence
fertte)  f@M), 1 fERMTr)  f(2M)
B—2m(p—2) n(p—2) P
< W(l —2 ) ll|] (16)
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for all z € E,. If m,n — oo we get, the sequence {%} is p—Cauchy se-

quence in the p—complete modular space X,. Hence {%} is p—convergent

! (i:x) from E, into X,

in X,, and we well define the mapping Q(x) = lim,,_,
satisfying

p(f(x) = Q(z)) <

(17)

for all z € E,, since p has Fatou property. For all z,y € E, with Ly, by
applying (2) and (O3) we get

p(A(f (2" (z+y))+ (2" (2 —y))—2f(2"2) -2 (2"y))) < 62"(p_2)(!\$\|p+Hy(Hp))-
18
If n — oo then, we conclude that

Qr+y)+Q(xr —y) —2Q(x) —2Q(y) =0, z Ly

for all z,y € E, and on account of the results by F. Vajzovi¢ [28] and M.
Fochi [6], @ is quadratic. To prove the uniqueness, assume @' : E, — X, to
be another quadratic mapping satisfying (17). Then, for each z € E, and all
n € N one has

§QE) Q@) = pog(@nr) Q) < —5pl(Q(na) — ()

= —p(QUa) = () + () - Q'(nw))

< S1p(QUn) — () + ol (n) — Q' ()]
knp—?

< o lel

If n — oo we obtain @ = Q.
Case 2: if 0 < p < 2 then (5) become

p(f(2x) + f(2y0) — Af(x) — 4f (o)) < o™ [l (19)
where o™ = £(27 4 4P + k + £.37), and by the case 1 we have
p(f(2z) — Af(x)) < BT [lz]”, (20)

for all x € E, where 1 = %(2 + k+ k.3P). The rest of the proof is similar to
the proof of the first case, just the constants 57 and a™ serve as = and o™,
respectively. This completes the proof of theorem. O

In the following theorem we take the integers in the set 2% := {2™ : m € N}.



Hyers-Ulam-Rassias Stability of Orthogonal... 69

Theorem 3.2. Let (E,|.||) with dim E' > 2 be a real normed linear space
with Birkhoff-James orthogonality and X, is p—complete modular space. If a
function f : E — X, satisfying

p(f(z+y)+ fle—y) = 2f(x) = 2f(y)) < e(ll=[]" + [lyl]"), (21)

forall x,y € E with x 1y, € > 0 and p > 2, then there exist unique quadratic
mapping QQ : B — X, such that

p(f(x) = Qx)) <

(22)

for all x € E, where B+ = %(2 +k+k3P) and ot = E(20 + 2% + |+ £.3P).
Proof. Using Theorem 3.1, the case 0 < p < 2 we have
p(f(22) — 4f(x)) < BT ||=|l”, (23)

for all z € E, where 1 = %(2 +k+k.3°) and of = E (2P 4+ 2% 4 k4 £.3P).
Replacing z by 7 in (23) we get

p(f(x) —4f( N <6t|s

(24)
Replacing = by § in (24) we obtain

p(15) — 41 () < 8 | |

(25)

From (24) and (25) we get

i
22

| 8

pf@) = LI = o) =41 () +41(5) — £1(5)

gp(f(m)—-4f(§))+-§ﬂ(4f(£)“42f(§§»

@) — A1) + SAUIG) —41(5)

4

k2 p Kt x (|P

il b e >
BY TP

= Sok*||2
4

IN

IN

IN

X ||P

7] ) (26)

for all x € F. By mathematical induction, we can easily see that

T ||P

o7~ 45y < TS |2

=

(27)
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Whence
n Y 6+ . 7 T ||P B+ - i(2—
p(flz) —4"f(5)) < IZkZ 5 SIZQ(Q P | fP
i=1 i=1
6+ n(2—p) p
R I (28)

Same as the first case in the theorem 3.1, we find, for each z € E the sequence
4" f(5%) 1 is p—Cauchy sequence in p—complete modular space X,. Hence
4" f(5%)} is p—convergent in X, and we well define the mapping Q(z) =

lim,, o 4" f(57) from E into X, satisfying

o(f(2) - Qx) < -

< el (29)

for all x € E, since p has Fatou property. For all z,y € E, with z Ly, we
obtain

p(A" (27" (@+y))+f (27 (x—y))-2f(27"2)=2f(27"y))) < 62”(2_p’(|!fv||p+(llyH)p).

30
If n — oo then, we conclude that Q(z+y)+Q(z—y)—2Q(z)—2Q(y) =0, =Ly
for all z,y € E and on account of the results by F. Vajzovi¢ [28] and M. Fochi
6], @ is quadratic. To prove the uniqueness, assume @’ : E — X, to be
another quadratic mapping satisfying (29). Then, for each x € E and for all
n € 2 one has

T 1 T T

§QE) ~ Q@) = o@D~ Q) < K@)~ Qo)
< 28 [0 @Qgm) — Flom)) + 0(@ (o) — T )]
k

< mEP) Zg|P .
5 |

If m — oo we obtain Q = ’. This completes the proof of theorem. O

Corollary 3.3. Let E is a real linear space with dimE > 2 and X, is
p—complete modular space. If a function f: E — X, satisfying

p(f(x+y)+ flx—y) —2f(x) = 2f(y)) <, (31)

forall x,y € E with x Ly and € > 0, then there exist unique quadratic mapping
Q: E — X, such that

elk(k+ 1))

p(f(2) = Q@) = ——;

(32)

forallx € F.
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Corollary 3.4. Let (E,, ||.||) with dim E, > 2 be a real normed linear space
with Birkhoff-James orthogonality and (X, ||.||) is Banach space. If a function
f: E, = X satisfying

1z +y) + [z —y) = 2f () = 2f W)l < e(ll=]]” + lly]I"), (33)

for all x,y € E, with x1y, ¢ > 0 and p € R\ {2}, then there exist unique
quadratic mapping Q) : £, — X such that

Blaam@=2) 2P if p € RM\ {2},

Hf(x>—@<x>||s{ AN (34)

4-—2pP

for all x € E,, where B+ = 27 (4+2.37), 8~ = - (4+2177), ot = (2P + 2% +
2+ 2.37) and a~ = €(4 + 2'7P).

Proof. 1t is well known that every normed space is a modular space with the
modular p(x) = ||z|| and k = 2. O

Corollary 3.5. Let E is a real linear space with dim E > 2 and (X, ||.||) s
Banach space. If a function f : E — X satisfying

[f(x+y)+ flz—y)=2f(z) = 2f ()] <e (35)

forall x,y € E with x_Ly and € > 0, then there exist unique quadratic mapping
Q: E — X such that

3
IF(2) = Q)] = Fe (36)
forallx € E.
Proof. 1t is well known that every normed space is a modular space with the
modular p(z) = ||z||, p=0 and k = 2. O
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