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Abstract 

     In this study, an analysis has been carried out on mixed convection thermally 
radiating flow and heat transfer in a vertical channel partially filled with a 
Darcy-Forchheimer porous substrate of finite thickness attached to one of the 
walls taking into consideration the effects of permeability, Rosseland radiation 
and viscous dissipation. The governing equations have been reduced to non-
linear ordinary differential equations by means of dimensional analysis and are 
solved analytically for some specific values of the non-dimensional governing 
flow parameters using Adomian Decomposition Method (ADM). The velocity and 
temperature profiles are assessed and discussed by means of graphs for various 
values of the pertinent emerging parameters. The shear stress parameters and the 
heat transfer rates at the walls as well as the velocity and temperature gradients 
are examined quantitatively. A comparison of the study has been made as a 
special case, with the more recent published work in the literature which lends 
itself to favorable agreement. It has been found that these emerging parameters 
have considerable influence on the flow and heat transfer characteristics.  
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1 Introduction 
 
The mixed convection or combined free-forced as a phenomenal mechanism, has 
its existence based on density changes or temperature differences for buoyancy 
related forces while forced convection may be sequel to the mechanized influence 
induced by an external agency such as flows maintained mechanically by pressure 
drop, mixer, agitator, fan blowing, etc. Nonetheless, the influence of thermal 
convective flow upwards along heated surfaces or downwards along cooled 
surfaces caused by buoyant forces is termed natural or free convection. On the 
other hand, that due to the influence of impressed forces such as pressure 
gradients and many related others is forced convection. Combined convection, a 
combination of natural and forced thermal convection with comparable order, in 
the presence of porous media is prevalent in a number of natural phenomena; and 
has varied wide range of many an engineering/industrial application as 
exemplified in enhanced extraction of crude oil, nuclear waste repositories, 
catalytic waste disposal, underground water management, filtration, heat 
exchangers, electronic devices, thermal insulation, packed bed catalytic reactors 
for removal of pollutants, oceanic and atmospheric circulations, extraction of 
geothermal energy, cooling of nuclear reactors, etc. A comprehensive list of 
several technological applications of this mechanism has been documented by Pop 
and Ingham [1], Nield and Bejan [2]. The analysis of free convective flow and 
heat transfer of a viscous fluid about a flat plate parallel to the direction of body 
forces with variable fluid properties and prescribed uniform wall temperature 
(PUWT) in a moving or an otherwise still viscous fluid was analyzed by Ostrach 
[3]. Beckermann et al. [4], who performed numerically and experimentally the 
steady-state natural convection fluid flow and heat transfer in a rectangular 
enclosure partially filled with a saturated porous medium.  Hydrodynamic and 
heat transfer of a fully developed flow for a viscous and incompressible fluid 
streaming through a parallel-wall channel under various physical aspects with 
mixed convection effect has been studied extensively by many authors. Barletta 
[5] examined combined forced and free convection fully developed and viscously 
dissipating flow in a vertical parallel-plate channel with prescribed wall heat 
fluxes and obtained ordinary perturbation method (OPM) solutions. Chamkha [6] 
reported closed form solutions of velocity and temperature for mixed convection 
channel flow with symmetric and asymmetric wall heating conditions. Makinde 
and Osalusi [7] examined exactly the effect of magnetic field and wall-slip 
velocity on steady flow of an electrically conducting viscous fluid in a uniform 
width channel. Eegunjobi and Makinde [8] conducted a numerical investigation of 
entropy generation in a vertical porous channel through the effect of both 
buoyancy force and Navier slip and accessed solutions of both velocity and 
temperature using a shooting technique. Kamis et al. [9], of late, investigated 
through Buongiorno model the combined effects of variable viscosity and 
convective cooling on unsteady flow of nanofluids through a permeable pipe 
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using a semi-discretization finite difference method coupled with Runge-Kutta-
Fehlberg scheme. Also, Adeniyan and Adigun [10] presented numerically the 
transient two-dimensional MHD boundary layer stagnation flow with heat and 
mass transfer in a saturated Darcian porous medium due to the simultaneous 
influence of pollutant concentration and the stress (pressure) work. Chauhan and 
Kumar [11] studied the effects of slip conditions on fully developed forced 
convection in a circular channel filled with a highly porous medium saturated with 
a rarefied gas and uniform wall surface heat flux, using Darcy extended 
Brinkman-Forchheimer model. Thermal radiation, an important mode of 
transference of heat energy owes its existence on a temperature power-law in the 
range of about 4 or 5 unlike thermal conduction and convection energy transfers 
which depend on difference in absolute temperatures approximately to the first 
power between two different locations in the flow regime, Siegel and Howell [12]. 
The influence of thermal radiation becomes very significant when the fluid 
density is low and working temperature is high. Several engineering and industrial 
processes such as high technology application in space shuttle, re-entry vehicles 
and solar power collectors, nuclear power plants, heat treatment of glass and metal 
plates, fibrous insulation, material surface coating and many others require heat 
energy transfer by radiation. Using the Rosseland approximation, Grosan and Pop 
[13] examined both analytically and numerically the thermal radiation effect on 
steady fully developed mixed convection flow in a vertical channel with different 
uniform wall temperatures. They observed a decrease in reversal flow with an 
increase in the radiation parameters. Most often it is necessary to introduce porous 
matrix into the flow regime in channel due to its ever demanding and increasingly 
important applications. Flows through porous media have several applications 
such as in agriculture engineering for curtailing excessive moisture that may 
damage farm food products such as permafrost degradation and undesirable high 
temperature of the soil and in petrochemical industries for filtration, adsorption 
and purification processes and environmental pollution management such as 
exhaust mufflers, to mention but a few. Israel-Cookey et al. [14] investigated the 
combined effects of radiative heat transfer and magnetic field on steady porous 
medium channel flow of an electrically conducting fluid with non-uniform wall 
temperatures. Chauhan and Rastogi [15] investigated natural convection MHD 
unsteady flow of a rotating viscous, thermally radiating and electrically 
conducting fluid in a vertical channel partially filled by a high porosity porous 
medium. Jain et al. [16] studied a free and forced convective slip flow, heat and 
mass transfer of a three dimensional viscous and incompressible fluid through a 
permeable vertical channel bounded by two vertical plates moving with equal 
velocity but in opposite directions. They observed that the skin friction coefficient 
is lower for water (Pr=7, Sc=0.61) than for air (Pr=0.71, Sc=0.22). Steady, 
laminar MHD flow of two immiscible viscous fluids with or without porous 
medium in the presence of heat generation was studied numerically by Chamkha 
[17]. Later on, Salah El-Din [18, 19], in the first of the two papers discussed 
analytically the effect of viscous dissipation on fully developed laminar mixed 
convection flow in a horizontal double passage channel and later extended in the 
second paper with inclusion of buoyancy forces as per vertical channel and 
obtained numerical solutions. The results show significant influence of the baffle 
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position on the pertinent flow and heat transfer characteristics. Sastry et al. [20] 
investigated exactly the Couette flow of two immiscible viscous fluids between 
two permeable horizontal beds using Darcy’s law for the upper bed and 
Brinkman’s for the lower. Several authors have investigated various physical 
aspects of the transient oscillatory fluid flow through a channel filled with a 
saturated porous medium, to mention but a few, Makinde and Mhone [21], Hamza 
et al. [22], Adesanya and Makinde [23] all obtained closed-form analytical 
solutions. Chauhan and Agrawal [24] analyzed numerically in the first paper using 
Crank-Nicolson scheme, the MHD coupled slip flow of Newtonian fluid past an 
infinite horizontal plate at the bottom of a porous finite thickness layer whilst in 
the second use was made of homotopy analysis method (HAM) to analyze the 
MHD flow of viscous electrically conducting fluid between a porous medium bed 
and a shrinking sheet. Narahari [25] investigated analytically the transient free 
convection flow of a viscous and incompressible fluid between two infinite 
vertical parallel plates in the presence of constant wall temperature and mass 
diffusion whilst solution accessed by Laplace transform method. Rajput and Sahu  
[26, 27], presented the transient free convective MHD flow streaming between 
two infinite vertical parallel plates with constant wall temperature and mass 
diffusion, and thermal radiation in their first paper whilst the second is without 
radiation effect though with variable wall temperature and uniform mass 
diffusion. Use was made of the Laplace transform method in the latter while a 
combination of analytic/numerical technique invoked in the former. Singh [28] 
studied thermal radiation with MHD mixed convection visco-elastic slip flow 
through a porous medium in a vertical porous channel. Chauhan and Kumar [29] 
examined a fully developed mixed convection viscous fluid flow between two 
infinite vertical parallel plane walls, where a porous substrate of finite thickness is 
attached to the left vertical wall in the presence of radiation and viscous 
dissipation effects using the ordinary perturbation method (OPM) for the 
dimensionless fluid velocity and temperature fields. Adomian decomposition 
method (ADM), an approximate series solution proposed by Adomian [30] has 
been found efficient and strongly promising for tackling a wide range of boundary 
value problems (BVPs) in engineering and sciences. This method, unlike the 
traditional perturbation method is free of restrictions and limitations of 
largeness/smallness of selected flow parameter and it is expected to proffer more 
reliable analytical results. The convergence of the series may be powered or 
enhanced by Pad�́ approximants to accelerate the convergence of ADM series. 
Several researchers Wazwaz et al. [31], Mirgolbabaei et al. [32], Noor et al. [33], 
Makinde et al. [34, 35], Heidarzadeh et al. [36] among others in the recent past, 
successfully employed the method to solve nonlinear BVPs. More recently, 
Kumar et al. [37] analyzed free and forced convective flow in a vertical channel 
filled with composite porous medium with Darcy dissipation and Robin boundary 
conditions using Darcy-Lapwood-Brinkman model. They accessed analytical 
solutions via the ordinary perturbation method (OPM) and differential transform 
method (DTM). Studies conducted by Bellomo and Monaco [38] and Rach [39] 
respectively indicated significant merits of ADM over the perturbation technique 
and Picard’s method for finding solutions of some scientific problems with 
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nonlinear nature. Saleh and Hashim [40], who focused on flow reversal 
phenomena for MHD mixed convection in a vertical channel, however employed 
shooting technique.  
 
In all the literature survey discussed in the aforementioned studies, one notices 
that none considered the influence of porous medium permeability due to the 
quadratic variation in the fluid velocity. Since moderately strong fluid velocity in 
saturated porous medium is associated with many flow and heat transfer problems 
in the context of laminar viscous flow streaming through the channels; and most 
especially those in which a porous substrate is attached to channel wall, it would 
be of interest and importance to include the joint effects of viscous dissipation, 
viscous heating, Darcy-Forchheimer quadrature on thermally radiating viscous 
and incompressible fully developed hydrodynamic flow through a parallel vertical 
wall channel. This aspect forms the subject matter of the present communication 
which may be regarded as an extension of Ref. [29] besides the ADM adopted for 
the solutions of the resulting dimensionless boundary value problems (BVPs). 
 

2 Mathematical Formulation 
 
Consider steady two dimensional laminar, fully developed flow of a viscous fluid 
streaming through the region between two infinitely long vertical parallel plates in 
which a finitely thick Darcy-Forchheimer substrate of uniform porous 
permeability has been bonded perfectly with the left wall of the channel as 
depicted in the schematic diagram of Fig.1. The channel width or hydraulic 
diameter is D while the substrate slab thickness is h. The x� − axis coincides with 
the left plate and extends in the reverse direction to that of the acceleration due to 
gravity; such that −∞ < x� < ∞ while the y� − axis is taken perpendicular to the 
channel parallel plates. 
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Another axis on the plane intersecting orthogonally with the x� − axis along which 
there is neither convection current nor stream-flow also extends without bounds. It 
is assumed that the left plate through the origin O and the right plate through D 
have prescribed uniform wall temperatures �� and �
 respectively; satisfying�
 >��. Further it shall be assumed that both the porous medium of the substrate slab 
and the flowing fluid are thermally in equilibrium at every location. Under fully 
developed flow approximation, the fluid velocity is described by components ���  , v�� along  x�, y� respectively such that the subscripts � = 1, 2 connote the porous 
substrate slab or porous region (0 ≤ y� ≤ ℎ) and substrate-free or clear fluid 
region (ℎ ≤ y� ≤ �) of the flow regime. In this model, we assume the usual 
Boussinesq approximation that all fluid properties remain constant except the 
variation of the fluid density in the body-force term only in the Naviers-Stokes 
equations. Therefore, the fluid densities in both substrate slab and substrate-free 
regions may be posited approximately as 
  
           � = ���1 −  (��� − �!)", � = 1, 2                                                              (1) 
 
for first order approximation of Taylor series expansion about the reference 
density ��. In line with full discussion on the choice of fluid temperature for fully-
established mixed convection channel flow Barletta and Zanchini [41]. 
 

�! = #$%#&'  , the mean temperature of the channel wall temperatures signifies the 

reference temperature,    is the thermal expansion coefficient, ��( and ��' are fully 
developed fluid temperatures in substrate slab and substrate-free regions 
respectively.  In order to address the influence of thermal radiation for this present 
channel flow model, use will be made of the Roseland approximation Ref. [12], 
neglecting the radiative heat flux in the x� direction, the dominant radiative heat 
flux along the y� direction discerningly takes the form 
  

             )�* = − +,∗
./∗

0#�12
034 ,  )* = − +,∗

./∗
0#�52

034                                                               (2) 

 
for an optically thin viscous hydrodynamic fluid flowing through the channel.  
 
Where 6∗ and 7∗ are the Stefan-Boltzmann constant and the mean absorption 
coefficient for thermal radiation.  
 
Essentially, the use of Taylor’s theorem for the expansion of temperature 

dependent function F(���)= ���+
 about the fluid mean or reference temperature �!, 

lends itself to the smallness of temperature difference  ��� − �!.  Consequently 
 

          ���+ = ��!+ + 4(��� − �!)��!. + 6(��� − �!)'��!. + ⋯                         (3)         
 
and on neglecting higher order terms, one obtains  
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                   ���+ ≈ �!. (4��� − 3�!) , (� = 1, 2).                                 (4) 
                  
Using this (4) discerningly in the set of eqns. (2), we find 
   

                 )* = − (>,∗#?@./∗
0#�1034     ,     ABCA3 = − (>,∗#?@./∗

05#�50345 .                               (5) 

 
Taking into cognizance all the assumptions stated earlier, therefore the equations 
of mass conservation, momentum and energy balance for the Newtonian fluid 
model in the two regions are posited as 
  0D4E0F̅ + 0H4E0I� = 0, � = 1, 2                                                                        (6) 

 

��( 0D410F̅ + v�( 0D410I� = − (
J$

0K
0F̅ + L4

J$
05D410I�5 + M (��( − �!) − L

J$N ��( − OPJ$D$L,5 ��('         (7) 

              
��' 0D450F̅ + v�' 0D450I� = − (

J$
0K
0F̅ + L

J$
05D450I�5 + M (��' − �!)                                                                   (8) 

                                                                                                

��QK R��( 0#�10F̅ + v�( 0#�10I� S = 7� 05#�10I�5 − 0B�C0I� + T̅ R0D410I� S' + L
N ��('                                   (9) 

  

��QK R��' 0#�50F̅ + v�' 0#�50I� S = 7 05#�50I�5 − 0BC0I� + T R0D450I� S'
                                              (10) 

 0K
0I� = 0                                                                                                                  (11) 

 
with the accompanying boundary and matching interface conditions Ref. [29]: 
 ��((0) = 0, ��((0) = ��,   ��'(�) = 0, ��'(�) = �
                          (12a) 
 

��((ℎ) = ��'(ℎ), ��((ℎ) = ��'(ℎ), T̅ 0D410I� (ℎ) = T 0D450I� (ℎ), 7� 0#�10I� (ℎ) = 7 0#�50I� (ℎ)  (12b) 

 
where, QK is the specific heat at constant pressure and K is the permeability of the 

porous medium,k  is the thermal conductivity, k  effective thermal conductivity in 
the porous medium, µ  is the viscosity of the clear fluid, µ  is the effective 
viscosity of the fluid in porous medium, M is the acceleration due to gravity, U is 
the kinematic viscosity; where T = ��U. In addition, the Forchheimer coefficient 
is designated by .Fb  

 
It is importantly necessary to highlight further assumptions invoked into this 
present channel flow model through eqns. (12a) - (12b). Specifically, the usual 
no-slip velocity conditions at the channel walls and very different wall 
temperatures have been presumed as presented in (12a) while equality in fluid 
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velocities, temperatures, shear stresses and thermal fluxes across the porous-
substrate and substrate-free interface are unveiled by (12b). 
 
As the channel is infinitely long, the entrance correction can be ignored so that 
fully developed flow guarantees that the velocity components vV = 0, (i = 1, 2).  

Under this claim, the equation of conservation of mass (6) reduces to  
0D4E0F̅ = 0 

which integrates to give ��� = ���(W�), a function of  W� only; while the W� −component  of the momentum balance equation (11) automatically simplifies to 

give 
0K
0F̅  _`  a constant ab c = c(d̅) a function of d̅ only. In summary we may 

write 
 

    c = c(d̅), vV = 0, 0D4E0F̅ = 0, ��� = ���(W�), (i = 1, 2).                            (13) 

 
For convenience, one may nondimensionalize the remaining governing equations 
alongside the boundary and matching interface conditions by the following 
parameters: 
 

      x = e�
f , y = 34

f , �� = D4ED$ , �� =  #�Eg#?#&g#$ , (i = 1, 2).                                            (14) 

 
Following Ref. [6, 29, 40] the pressure gradient and the reference velocity are 
 

           
hK
hF̅ = −i,   �� = j
5

+kL.                                                               (15) 

   
Substitution of eqns. (13) and (15) into eqns. (6) through (10) gives rise to the 
following eqns: 
 
Region-I (Porous Substrate Slab) 
 j
J$ + L4

J$
05D410I�5 + M (��( − �!) − l

N ��( − OPD$l,5 ��(' = 0                         (16) 

 
/�

J$mn
05#�10I�5 − (

J$mn
0B�C0I� + L4

J$mn R0D410I� S' + l
Nmn ��(' = 0                                 (17) 

 
Region-II (Substrate-Free or Clear Fluid) 
 j
J$ + U 05D450I�5 + M (��' − �!) = 0                                                             (18) 

 
/

J$mn
05#�50I�5 − (

J$mn
0BC0I� + l

Nmn R0D450I� S' = 0                                                      (19) 
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Invoking the boundary condition (12a) on eqns. (16) and (18), replacing the 
effective viscosity T̅ by To( and simplifying to have the following set of derived 
boundary conditions:  
     

( )2
11

2
1 10

,m

y

g T Td u A

dy v

β
µφ φ=

−
= − −

     

( )2
12

2

m

y D

g T Td u A

dy v

β
µ=

−
= − −                  (20)

            

 

   

where o( = L4
L  is the viscosity ratio.  

 
Using (4) in (5), transferring the results into the energy balance eqns. (17) and 
(19), and then nondimensionalize with (14) the resulting energy eqns. along with 
the momentum balance eqns. (16) and (18), simplifying discerningly to obtain 
  

2 2 2
1 1 1 1 1

1
48 sT u u Fuφ σ

λ
σ′′ = − + − − 

                                                              
( )21   

     

( )
2

2 21
1 1 1

2 2

3 3

3 4 3 4

N Br N Br
T u u

N N

φ σ
φ φ

′′ ′= − −
+ +

                                                     ( )22  

        

( )2 2

1
48T u

λ
′′= − +                                                                          ( )23  

        

( )2

2 2

3

3 4

NBr
T u

N
′′ ′= −

+
                                                                  ( )24

 
 
Where  
 

     p
2 ,

k

k
φ =

0

,
D

k
σ = 0 ,f

s

u b
F

v
= 0Re ,

u D

v
=

( )
2

0

1 2

u
Br

k T T

µ=
−

( ) 3
0

2
,Dg T T D

Gr
v

β −
= q = //∗

+,∗#?@ , r = s*
tu vw

x
wy

      (25)  

 
are respectively thermal conductivity ratio, permeability parameter (or Darcy 
number), Forchheimer number, Reynolds number, Brinkman number, mixed 
convection parameter, Stark number (or conduction-radiation parameter) and 
mixed convection parameter (or modified Grashof number).  
 
Twice differentiating �( in (21) with respect to y; and substituting the result into 
(22), repeating the same for �' in (23) for use in (24) and after a rearrangement of 
terms and simplification, one obtains the following set of fourth order nonlinear 
ODEs:  
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( ) ( ) ( ) ( )2

1 2 1 1 1 2 11 2 2iv
s su K F u u K K F u′′ ′= + + + 2

1 2 1K K u+                             ( )26
 

 
( ) ( )2

2 3 2
ivu K u′=                                                                ( )27

 
 
Where 

               1
2

3

3 4

N Br
K

N

λ
φ

=
+

, 
2

2
1

,K
σ
φ

=
 

3

3

3 4

N Br
K

N

λ=
+

                                       (28)   

 
Further, the nondimensional boundary and matched interface conditions are 
derived by utilizing eqn. (14) in (12a) −(12b) and (21), and written as 
  

�((0) = 0, �((0) = − (
' , 1

1 1

48
(0)

2
u

λ
φ φ

′′ = +

  
                                                   (29 )a  

�'(1) = 0, �'(1) = (
' , 2(1) 48

2
u

λ′′ = − −
                                          

(29 )b  

 

 �((_) = �'(_), �((_) = �'(_), 2
1 1 1 2( ) ( ) ( ),u a u a u aφ σ′′ ′′− =

                                                                                                                           (29 )c  

1 1 2' ( ) ' ( ),u a u aφ = ( )2
2 1 1 2( ) ( ) ( )u a u a u aφ σ′′′ ′ ′′′− =

.
 

 
The pertinent engineering quantities of interest are the skin-friction coefficients 
and the Nusselt numbers. These quantities may be stated respectively in terms of 
the wall sheer stresses and the surface heat fluxes as: 
 

2
0 0

, , ( 1,2)
( )i

wi wi
f i

D m

Dq
C Nu i

U k T T

τ
ρ

= = =
−                                                      (30)  

 
Where 
 

1 2 1 2
1 2 1 1

0 1 1

, , ,w w w w

y y y y

u u T T
q k q k

y y y y
τ µ τ µ

= = =

∂ ∂ ∂ ∂= = = − = −
∂ ∂ ∂ ∂                        (31)  

 
They are transformed by (14) to yield their respective nondimensional forms 
written as 
        

1 21 1 2 2 1 2(0) Re (0), (1) Re (1), (0) (0), (1) (1)f f f fC C u C C u Nu T Nu Tφ φ′ ′ ′ ′ ′ ′ ′ ′= = = = = − = −
  

                                                                                                                            
(32)   
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3 Solution Methods 
 
3.1 Some Important Cases 
 
3.1.1 Negligible Forchheimer Number 
 
The situation where the effect of Forchheimer permeability is inconsequential is 
frequently associated with slowly streaming flow in a region constrained by the 
parallel channel walls. In which case, 0sF = in this present work lends itself to the 

equations reported by Ref. [29]. 
 
Pure Forced Convection ( 0)λ =     
 
In the case of purely forced convection, when the free or natural convection effect 
is inconsequential, then 0λ =  implying that 1 3 0K K= = . Eqns. (26) and (27) 

reduce to 
             

( ) ( ) ( )2

1 2 1 2 11 2 2iv
s su K F u u K F u ′′ ′= + +

     
                                          (33)  

 
( )
2 0ivu =                                                                                            (34)

 
 
Although (33) still retains its nonlinearity nature, fortunately (34) integrates 
completely to yield 
 

           
2 3

2 0 1 2 3u c c y c y c y= + + +
                                                                        

(35)
 

 
wherein the constants c’s are determined under the present circumstance, ignoring 
the buoyancy parameter in the boundary conditions (29a-c). The dimensionless 
temperature field T1 in the porous substrate region-I, using (35) in (27), can thusly 
be evaluated. If however, Fs=0 is imposed in (33), then 
  

                
    ( )

1 2
ivu K u′′=                                                               (36)

 
 
with the general solution 
   

                    1 0 1 3 4s coshu a a y a hin y a yω ω= + + +
                                           

(37)
 

 
where a’s are constants that can be determined by means of the boundary 
conditions (29a-c) and 
 

                        2Kω =
 

 



Mixed Convection Radiating Flow and Heat…                                                   91 

3.1.2 Predominant Conduction-Radiation ( )N → ∞     
 
The case for which the conduction-radiation parameter N is finitely large, 

1 2/K Brλ φ→ , 3K Brλ→ so that (26) and (27) take the form 

 
( ) ( ) ( ) ( )2

1 2 1 1 1 2 11 2 2iv
s su K F u u K K F u′′ ′= + + + 2

1 2 1K K u+                         
 

 
( ) ( )2

2 3 2
ivu K u′=                                                                                (38) 

 
In this special case, the resulting BVPs (26)-(28), (29a-b) are nonlinear. 
 
3.1.3 Infinitely Large Viscosity and/or Thermal Conductivity Ratios 

1 2( , )φ φ → ∞     
 
The special case wherein the viscosity ratio and/or the thermal conductivity ratio 
are infinite in values, proffers the same solution as presented in section (3.1.2) 
above. That is, 1 2 1 2( ), ( ).and orφ φ φ φ→ ∞ → ∞ → ∞ → ∞  

 
3.2 Adomian Decomposition Method 
 
Adopting the standard decomposition procedure proposed by Ref. [30], we 
introduce linear differential operator and its inverse: 
 

        

4
4 4

4
0 0 0 0

, ( ) ( )
y y y y

y y

d
L L d d d d

dy
η η η η−= = ∫ ∫ ∫ ∫i i

                                 
(39)

 

 
It may be convenient to rearrange eqns. (24) through (25) using (26) in 
operational forms as follows  
 

                ( )4 ( ) ( 1,2)y i i i iL u g y Ru N u i= − − =
                                

(40)
 

 
where the LHS of (40) denotes the highest order derivative, gi(y) is the source 
function, Rui is the remainder of the linear term with derivative order less than 4, 
while N(ui) are nonlinear terms:  

   ( )( )2
2

1 2 1 1 1 2 1 1 2 1 1 2 1( ) 2 2 ,s sN u K F u u K K F u K K u Ru K u′′ ′ ′′= + + + =
              

(41 )a
 

   ( )2

2 3 2 2( ) , 0N u K u Ru g′= = =
                                                                 

(41 )b
 

which may be represented by infinite series of the so-called Adomian polynomials 
 
An , Bn , Cn and Dn as: 
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1
,

!

n n
i

n in
i

d
A F U

n d
ξ

ξ
ξ = =

    =    
    
∑

                           

(42 )b

 
 
such that nB  , nC   and nD  are specified as nA  in (41b) for z = 0,1,2… and more 

importantly ξ  is a parameter introduced for convenience for n=0, 1, 2, . . . and in 
addition we have replaced �( by U and �' by V.  
 
Applying the inverse operator on eqns. (26)-(27), one obtains 
 

( ) ( ) ( ) ( ) ( ) [ ] [ ]
2 3

4 4
2 20 0 0 0 2

2 6 y y s

y y
U y U U y U U L K U L K F UU− −′ ′′ ′′′ ′′ ′′= + + + + +   

                            
+ ( ) ( )24 4 2

1 2 1 22y s yL K K F U L K K U− − ′  + +   
                          (43)   

 

       

( ) ( ) ( ) ( ) ( )
2 3

4 2
20 0 0  0

2 6 y

y y
V y V yV V V L K V−′ ′′ ′′′  = + + + +  

                     
(44)

 
 
More importantly, the general solutions proffered by ADM are the infinite series 
Hasan and Zhu [42] 
 

0
n

n

U U
∞

=

=∑  , 
0

n
n

V V
∞

=

=∑  along with N-th partial sums
1 1

0 0

,
N N

N n N n
n n

U V
− −

= =

Φ = Ψ =∑ ∑
 

 

where the n-terms (Un, Vn ) are determined recursively and the N-th partial sums 
can be used to access the approximate exact solutions iteratively depending on the 
degree of accuracy so desired.  

 
If 1 2( , )u u  are replaced by ( , )U V and 1 2 3, ,K K K substituted for, by means of (38)

the computation algorithm can be started off as follows: 
  

          

2 3

0 1 2
1 1

48

2 2 6

y y
U y

λα α
φ φ

 
= + − + + 

                                                          
(45)  

 

           

2 3
0 3 4 5 6

1 1
.

2 6
V y y yα α α α= + + +                                            (46) 
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Where  
         

1 2 3 4 5 6(0), (0), (0), (0), (0), (0)U U V V V Vα α α α α α′ ′′ ′ ′′ ′′′= = = = = =
              (47)                  

 
are unspecified boundary conditions whose values will be determined on using 
eqns. (29a-c) and 
 
for z ≥ 1, the recursive relation takes the form 

 
       

( ) ( ) ( ) ( ) ( ) [ ] [ ]
2 3 2 2

4 4
1

1 1

0 0 0 0 2
2 6n n n n n y n s y n n

y y
U y U U y U U L U F L U U

σ σ
φ φ

− −
+ ′ ′′ ′′′ ′′ ′′= + + + + +

    

                            
+ ( )

2 2
24 4 2

2 1 2 1

2 s y n y n

Br Br
F L U L U

λ σ λ σ
φ φ φ φ

− −   ′  + +     
               (48)   

 

( ) ( ) ( ) ( ) ( )
2 3

4 2
1

2

0 0 0  0 .
2 6n n n n n y n

y y Br
V y V yV V V L V

λ
φ

−
+ ′ ′′ ′′′  = + + + +  

                     
(49) 

 
The set of equations (45) through (49) encompassed by the algorithm has been 
coded in computer algebraic language using Maple-18 software package for 
simulations system of equations and then implemented for parametric values of 
the emerging flow parameters. It is worthy to mention that the task of evaluating 
the unspecified parameters is very challenging. Nonetheless, the substitutions of 
(47) into our approximated exact solutions of  U and V, assisted by coded 
program for simultaneous system of equations lend themselves to the much 
needed boundary conditions. 
 

4 Results and Discussion  
 
4.1 Tabular Results 
   

Table 1: Computations showing the results of variation of each dimensionless 
parameter

Fs Br  σ  Gr  a  2φ  1φ  N  (0)fC ′  (1)fC ′  (0)Nu′  (1)Nu′  

5 0.1 1 1 0.2 1.67 1.25 1 25.06369215  4.407405645  
10 0.1 1 1 0.2 1.67 1.25 1 22.60273600  4.440950002  
15 0.1 1 1 0.2 1.67 1.25 1 19.62407696  4.490118062  
5 0.1 1 1 0.2 1.67 1.25 1 25.06369220  4.407405643  
5 0.2 1 1 0.2 1.67 1.25 1 25.34430791  8.702375526  
5 0.5 1 1 0.2 1.67 1.25 1 26.27435581  27.65028150  
5 0.1 1 1 0.2 1.67 1.25 1 25.06369213  4.407405658  
5 0.1 3 1 0.2 1.67 1.25 1 12.63074708  5.94572559  
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The responses of the skin-friction coefficients and the Nusselt numbers due to 
variations in the basic governing flow parameters are unveiled in Table 1. As 
observed, the skin-friction parameters intensify absolutely in values for both hot 
and cold parallel plates when Brinkman number Br, Grashof number Gr, 
conductivity ratio 2φ  and Forchheimer number Fs, in the range 0.01 0.03Fs≤ ≤  

strengthen in values but all diminish absolutely as not only Fs in the larger range 
5 15Fs≤ ≤  but also substrate thickness parameter improve in value. Both wall 
surface shear parameters (0)fC′ and (1)fC′ reduce absolutely as the permeability 

parameter σ  intensifies. On the other hand, the heat transfer rates at the walls 
increase with σ , Br and Gr. The Nusselt numbers (0)Nu′ and (1)Nu′ , and skin-

friction coefficients all reduce values as the permeability ratio 1φ  increases while 

all (0)fC′ , (1)fC′ (0)Nu′  and (1)Nu′ can be increased due to intensification of the 

radiation parameter N. 
 
4.2 Graphical Results 
 
The comparison in the velocity profiles between the parametric perturbation 
method (PPM) and the Adomian decomposition method (ADM) is displayed in 
Figure 2. As it can be seen, there appears to be little deviation in the plots due to 
the two methods. However, the merit of using approximate analytic method over 
the usual assumption of smallness in perturbation parameter has been found 
advantageous besides the accompanying insuperable mathematical difficulties. 
Figures 3-4 demonstrate the velocity profiles for varying legend parameters Fs 
and the substrate thickness a, for which each profile increases from the zero wall 
value with a kink at the fluid-substrate interface and then progressively continues 
until a peak value is attained at about the centerline after which it sequentially 
loses values in the clear fluid region to stick to the hot plate, again with zero 
velocity. The plots as revealed in Figures 5-10 predict similar deformed 

5 0.1 5 1 0.2 1.67 1.25 1 8.236682860  15.38221685  
5 0.1 1 1 0.2 1.67 1.25 1 25.06369215  4.407405688  
5 0.1 1 3 0.2 1.67 1.25 1 25.54144270  4.944551513  
5 0.1 1 5 0.2 1.67 1.25 1 26.09243505  5.847235174  
5 0.1 1 1 0.1 1.67 1.25 1 25.06369216  5.112910441  
5 0.1 1 1 0.2 1.67 1.25 1 13.59388778  4.407405672  
5 0.1 1 1 0.3 1.67 1.25 1 11.24412289  3.988639742  
5 0.1 1 1 0.2 1.00 1.25 1 24.68857697  6.827805054  
5 0.1 1 1 0.2 1.25 1.25 1 24.86774897  5.664992681  
5 0.1 1 1 0.2 1.67 1.25 1 25.06369217  4.407405670  
5 0.1 1 1 0.2 1.67 0.2 1 34.26510774  4.909321291  
5 0.1 3 1 0.2 1.67 0.4 1 32.18819185  4.438061881  
5 0.1 5 1 0.2 1.67 0.6 1 31.67136451  4.392925724  
5 0.1 1 1 0.2 1.67 1.25 10 8.960610322  25.33772588  
5 0.1 1 1 0.2 1.67 1.25 30 9.788189089  25.38293091  
5 0.1 1 1 0.2 1.67 1.25 50 9.974139451  25.39291752  
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curvilinear velocity profiles in resemblance to those of the latter except that the 
fluid accelerates as Gr, 1 2,φ φ  and Br increase but slightly as per the Stark number 

N and Fs. The dimensionless temperature plots against the dimensionless 
transverse distance is depicted in Figures 11-17, the fluid temperature in substrate 
and clear fluid regions rises when each of the parameters Gr, Br, N and σ  is 
increased as per Figures 11-14 while Figures 15-17 unveil rapid fall in 
temperature, and consequently a reduction in the thermal boundary layer prevails 
as the permeability and thermal conductivity ratios, and substrate thickness 
increase in values. Also increase in the Forchheimer number consequently 
features a little fall in temperature (not shown due to space economy). 
 
5. Conclusions 
 
Adomian decomposition method (ADM) has been employed to investigate the 
heat and momentum transfer for an electrically conducting fluid streaming in a 
vertical channel whose one of its parallel walls is perfectly attached a porous 
substrate of definite width while the other wall has been subjected to a prescribed 
wall temperature in the presence of a uniform transverse magnetic field. 
Introducing new dimensionless variables alongside a similarity variable, the 
governing PDEs together with the fluid-substrate and wall boundary conditions 
are reduced to ODEs and then solved via ADM with Maple 18 written scripts for 
implementing the numerical simulations. Our findings reveal among others the 
following: 
 
• Skin-friction coefficients and surface heat transfer rates increase in 

magnitudes when Brinkman, Grashof and numbers as well as conductivity 
ratio strengthen for low range Forchheimer number but they all reduce in 
values for strengthening substrate thickness parameter as well as large 
range of Forchheimer numbers. 

• Both wall surface shear parameters reduce absolutely as the permeability 
parameter intensifies. On the other hand, the heat transfer rates at the walls 
increase with permeability parameter, Brinkman and Grashof numbers. 
Nusselt numbers and skin-friction coefficients all reduce values as the 
permeability ratio 1φ  increases while skin-friction coefficients as well as 

the Nusselt numbers can be increased due to intensification of the 
radiation parameter or Stark number. 

• Both substrate thickness parameter and Forchheimer number impede the 
fluid velocity in either of the porous and clear fluid regions whereas the 
Brinkman and Grashof numbers, the permeability and conductivity ratios 
can increase very rapidly velocity in both regions while the Stark and 
Forchheimer numbers do very slowly. 

• The fluid temperature in substrate and clear fluid regions rises when each 
of the Grashof and Brinkman numbers, radiation and porous medium 
permeability parameters is increased. 

 

 



Figures 
 

 
 

Figure 2: Velocity profiles, u vs. y for 0Fs =  
 
 

 

 
Figure 3: Velocity profiles, u vs. y 

 
 

 

 
Figure 4: Velocity profiles, u vs. y 
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Figure 5: Velocity profiles, u vs. y 
 

 

 
Figure 6: Velocity profiles, u vs. y 

 

 

 
Figure 7: Velocity profiles, u vs. y 
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Figure 8: Velocity profiles, u vs. y 

 

 
Figure 9: Velocity profiles, u vs. y 

 

 

 
Figure 10: Velocity profiles, u vs. y 
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Figure 11: Temperature profiles, T vs. y 

 

 

Figure 12: Temperature profiles, T vs. y 
 

 

 
Figure 13: Temperature profiles, T vs. y 

 

T2 

 

T1 

 

T2 

 

T1 

 

T2 

 

T1 

 



100                                                                                                 A. Adeniyan et al.                                                                                                     

 

 
Figure 14: Temperature profiles, T vs. y 

 
 

 

Figure 15: Temperature profiles, T vs. y 
 

 

 
Figure 16: Temperature profiles, T vs. y 
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Figure 17: Temperature profiles, T vs. y 
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