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Abstract

In this study, an analysis has been carried outroxed convection thermally
radiating flow and heat transfer in a vertical chael partially filled with a
Darcy-Forchheimer porous substrate of finite thieka attached to one of the
walls taking into consideration the effects of peainility, Rosseland radiation
and viscous dissipation. The governing equationgehlbbeen reduced to non-
linear ordinary differential equations by meansdunensional analysis and are
solved analytically for some specific values of tlmn-dimensional governing
flow parameters using Adomian Decomposition Metf#&ddM). The velocity and
temperature profiles are assessed and discussedeays of graphs for various
values of the pertinent emerging parameters. Tlearsktress parameters and the
heat transfer rates at the walls as well as th@e®y and temperature gradients
are examined quantitatively. A comparison of thedgthas been made as a
special case, with the more recent published workhe literature which lends
itself to favorable agreement. It has been fourat these emerging parameters
have considerable influence on the flow and heatgfer characteristics.
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1 I ntroduction

The mixed convection or combined free-forced avienpmenal mechanism, has
its existence based on density changes or temperdiiferences for buoyancy
related forces while forced convection may be seuthe mechanized influence
induced by an external agency such as flows maetamechanically by pressure
drop, mixer, agitator, fan blowing, etc. Noneths|ethe influence of thermal
convective flow upwards along heated surfaces ownsards along cooled
surfaces caused by buoyant forces is termed naburike convection. On the
other hand, that due to the influence of impreskedes such as pressure
gradients and many related others is forced comrecCombined convection, a
combination of natural and forced thermal convecuoth comparable order, in
the presence of porous media is prevalent in a eumbnatural phenomena; and
has varied wide range of many an engineering/imdistapplication as
exemplified in enhanced extraction of crude oilclear waste repositories,
catalytic waste disposal, underground water managéemfiltration, heat
exchangers, electronic devices, thermal insulaj@tked bed catalytic reactors
for removal of pollutants, oceanic and atmospheirculations, extraction of
geothermal energy, cooling of nuclear reactors, Atccomprehensive list of
several technological applications of this mechariss been documented by Pop
and Ingham [1], Nield and Bejan [2]. The analysidree convective flow and
heat transfer of a viscous fluid about a flat plaéeallel to the direction of body
forces with variable fluid properties and presadibeniform wall temperature
(PUWT) in a moving or an otherwise still viscousidl was analyzed by Ostrach
[3]. Beckermann et al. [4], who performed numeticand experimentally the
steady-state natural convection fluid flow and h#ansfer in a rectangular
enclosure partially filled with a saturated porausdium. Hydrodynamic and
heat transfer of a fully developed flow for a viesoand incompressible fluid
streaming through a parallel-wall channel underiowsr physical aspects with
mixed convection effect has been studied extensibglmany authors. Barletta
[5] examined combined forced and free convectidly fileveloped and viscously
dissipating flow in a vertical parallel-plate chahrwith prescribed wall heat
fluxes and obtained ordinary perturbation methoBNL) solutions. Chamkha [6]
reported closed form solutions of velocity and tenapure for mixed convection
channel flow with symmetric and asymmetric wall tivega conditions. Makinde
and Osalusi [7] examined exactly the effect of nadignfield and wall-slip
velocity on steady flow of an electrically conductiviscous fluid in a uniform
width channel. Eegunjobi and Makinde [8] condu@etlmerical investigation of
entropy generation in a vertical porous channebugh the effect of both
buoyancy force and Navier slip and accessed soklitimf both velocity and
temperature using a shooting technique. Kamis .ef9l of late, investigated
through Buongiorno model the combined effects ofiade viscosity and
convective cooling on unsteady flow of nanofluidsough a permeable pipe
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using a semi-discretization finite difference methmupled with Runge-Kutta-
Fehlberg scheme. Also, Adeniyan and Adigun [10]sented numerically the
transient two-dimensional MHD boundary layer stdagmaflow with heat and
mass transfer in a saturated Darcian porous mediuento the simultaneous
influence of pollutant concentration and the striggessure) work. Chauhan and
Kumar [11] studied the effects of slip conditiona @lly developed forced
convection in a circular channel filled with a higiporous medium saturated with
a rarefied gas and uniform wall surface heat fluxipgusDarcy extended
Brinkman-Forchheimer model. Thermal radiation, ampartant mode of
transference of heat energy owes its existencetemperature power-law in the
range of about 4 or 5 unlike thermal conduction eodvection energy transfers
which depend on difference in absolute temperatapgsoximately to the first
power between two different locations in the flamgime, Siegel and Howell [12].
The influence of thermal radiation becomes verynificant when the fluid
density is low and working temperature is high.&alengineering and industrial
processes such as high technology application acesghuttle, re-entry vehicles
and solar power collectors, nuclear power plargaf lreatment of glass and metal
plates, fibrous insulation, material surface captmd many others require heat
energy transfer by radiation. Using the Rosselgptaximation, Grosan and Pop
[13] examined both analytically and numerically thermal radiation effect on
steady fully developed mixed convection flow inextical channel with different
uniform wall temperatures. They observed a decr@ageversal flow with an
increase in the radiation parameters. Most ofténecessary to introduce porous
matrix into the flow regime in channel due to it®edemanding and increasingly
important applications. Flows through porous meligave several applications
such as in agriculture engineering for curtailingcessive moisture that may
damage farm food products such as permafrost dawadand undesirable high
temperature of the soil and in petrochemical ingesstfor filtration, adsorption
and purification processes and environmental polutmanagement such as
exhaust mufflers, to mention but a few. Israel-Gookt al. [14] investigated the
combined effects of radiative heat transfer and matg field on steady porous
medium channel flow of an electrically conductingid with non-uniform wall
temperatures. Chauhan and Rastogi [15] investigatgdral convection MHD
unsteady flow of a rotating viscous, thermally ediig and electrically
conducting fluid in a vertical channel partiallyléd by a high porosity porous
medium. Jain et al. [16] studied a free and forcexvective slip flow, heat and
mass transfer of a three dimensional viscous acompressible fluid through a
permeable vertical channel bounded by two vertplates moving with equal
velocity but in opposite directions. They obsertieat the skin friction coefficient
is lower for water (Pr=7, Sc=0.61) than for air @71, Sc=0.22). Steady,
laminar MHD flow of two immiscible viscous fluids itk or without porous
medium in the presence of heat generation wasestudimerically by Chamkha
[17]. Later on, Salah EI-Din [18, 19], in the firet the two papers discussed
analytically the effect of viscous dissipation anlyff developed laminar mixed
convection flow in a horizontal double passage okhand later extended in the
second paper with inclusion of buoyancy forces as \ertical channel and
obtained numerical solutions. The results showifsoggmt influence of the baffle
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position on the pertinent flow and heat transfearabteristics. Sastry et al. [20]
investigated exactly the Couette flow of two imniée viscous fluids between
two permeable horizontal beds using Darcy's law tbe upper bed and
Brinkman’s for the lower. Several authors have stigated various physical
aspects of the transient oscillatory fluid flowdbhgh a channel filled with a
saturated porous medium, to mention but a few, Nikiand Mhone [21], Hamza
et al. [22], Adesanya and Makinde [23] all obtaineldsed-form analytical
solutions. Chauhan and Agrawal [24] analyzed nuradyi in the first paper using
Crank-Nicolson scheme, the MHD coupled slip flowNsd#wtonian fluid past an
infinite horizontal plate at the bottom of a pordirste thickness layer whilst in
the second use was made of homotopy analysis méthatl) to analyze the
MHD flow of viscous electrically conducting fluidebveen a porous medium bed
and a shrinking sheet. Narahari [25] investigatedlyically the transient free
convection flow of a viscous and incompressibleidfilbbetween two infinite
vertical parallel plates in the presence of coristaall temperature and mass
diffusion whilst solution accessed by Laplace tfama method. Rajput and Sahu
[26, 27], presented the transient free convectiveDMFlow streaming between
two infinite vertical parallel plates with constam@all temperature and mass
diffusion, and thermal radiation in their first gapwhilst the second is without
radiation effect though with variable wall temperat and uniform mass
diffusion. Use was made of the Laplace transfornthoet in the latter while a
combination of analytic/numerical technique invokadthe former. Singh [28]
studied thermal radiation with MHD mixed convectigisco-elastic slip flow
through a porous medium in a vertical porous chiar@eauhan and Kumar [29]
examined a fully developed mixed convection viscliugl flow between two
infinite vertical parallel plane walls, where a pos substrate of finite thickness is
attached to the left vertical wall in the preseraferadiation and viscous
dissipation effects using the ordinary perturbatiorethod (OPM) for the
dimensionless fluid velocity and temperature fieldglomian decomposition
method (ADM), an approximate series solution prepoby Adomian [30] has
been found efficient and strongly promising forkdatg a wide range of boundary
value problems (BVPS) in engineering and scienddéss method, unlike the
traditional perturbation method is free of restaos and limitations of
largeness/smallness of selected flow parameteitaseéxpected to proffer more
reliable analytical results. The convergence of skees may be powered or
enhanced by Pé&dapproximants to accelerate the convergence of Adeies.
Several researchers Wazwaz et al. [31], Mirgolbabtal. [32], Noor et al. [33],
Makinde et al. [34, 35], Heidarzadeh et al. [36]oaugn others in the recent past,
successfully employed the method to solve nonlin@siPs. More recently,
Kumar et al. [37] analyzed free and forced conwectlow in a vertical channel
filled with composite porous medium with Darcy dsgion and Robin boundary
conditions using Darcy-Lapwood-Brinkman model. Thagcessed analytical
solutions via the ordinary perturbation method (QRMd differential transform
method (DTM). Studies conducted by Bellomo and MongB8] and Rach [39]
respectively indicated significant merits of ADMewthe perturbation technique
and Picard’s method for finding solutions of sonwemtific problems with
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nonlinear nature. Saleh and Hashim [40], who fodus® flow reversal
phenomena for MHD mixed convection in a verticahmhel, however employed
shooting technique.

In all the literature survey discussed in the afwstioned studies, one notices
that none considered the influence of porous mediemmeability due to the
quadratic variation in the fluid velocity. Since davately strong fluid velocity in
saturated porous medium is associated with many dlod heat transfer problems
in the context of laminar viscous flow streamingotigh the channels; and most
especially those in which a porous substrate &cl#d to channel wall, it would
be of interest and importance to include the jeiffiécts of viscous dissipation,
viscous heating, Darcy-Forchheimer quadrature amnthlly radiating viscous
and incompressible fully developed hydrodynamievftbrough a parallel vertical
wall channel. This aspect forms the subject mattehe present communication
which may be regarded as an extension of Ref.j28ides the ADM adopted for
the solutions of the resulting dimensionless bounsealue problems (BVPS).

2 M athematical For mulation

Consider steady two dimensional laminar, fully deped flow of a viscous fluid
streaming through the region between two infinitelyg vertical parallel plates in
which a finitely thick Darcy-Forchheimer substratef uniform porous
permeability has been bonded perfectly with the \edll of the channel as
depicted in the schematic diagram of Fig.1. Thenokl width or hydraulic
diameter iD while the substrate slab thicknes$isThex — axis coincides with
the left plate and extends in the reverse dirediotnat of the acceleration due to
gravity; such that-o < X < oo while they — axis is taken perpendicular to the
channel parallel plates.

X
A
Lo
TD
b Y
o, a, =0

Fig. 1: Schematic diagram
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Another axis on the plane intersecting orthogonaith thex — axis along which
there is neither convection current nor stream-fid®o extends without bounds. It
is assumed that the left plate through the origiar@ the right plate through D
have prescribed uniform wall temperatufgsandT),, respectively; satisfyirify, >
T,. Further it shall be assumed that both the poroedium of the substrate slab
and the flowing fluid are thermally in equilibriuat every location. Under fully
developed flow approximation, the fluid velocity described by components
u; ,v; along X, y respectively such that the subscripts 1,2 connote the porous
substrate slab or porous regigd <y < h) and substrate-free or clear fluid
region (h <y < D) of the flow regime. In this model, we assume tlseial
Boussinesq approximation that all fluid propertresnain constant except the
variation of the fluid density in the body-forcerteonly in the Naviers-Stokes
equations. Therefore, the fluid densities in bathssrate slab and substrate-free
regions may be posited approximately as

p=poll =BT =Tyl i=12 1)

for first order approximation of Taylor series erp@n about the reference
densityp,. In line with full discussion on the choice ofititemperature for fully-
established mixed convection channel flow Barlattd Zanchini [41].

Ty = ot To , the mean temperature of the channel wall tentyies signifies the

reference temperatureg is the thermal expansion coefficiefit,andT, are fully
developed fluid temperatures in substrate slab aobstrate-free regions
respectively. In order to address the influencthefmal radiation for this present
channel flow model, use will be made of the Rosglapproximation Ref. [12],
neglecting the radiative heat flux in tRedirection, the dominant radiative heat
flux along they direction discerningly takes the form

- 40" 6’1_"14

4-0'* 6’1_"24
Ir = 3 ay ’ Ir = =3 oy

)
for an optically thin viscous hydrodynamic fluidWing through the channel.

Wheres* and k* are the Stefan-Boltzmann constant and the meaor@hm
coefficient for thermal radiation.

Essentially, the use of Taylor's theorem for thepamsion of temperature

dependent function F()= T‘i4 about the fluid mean or reference temperafiye
lends itself to the smallness of temperature difiee T; — T,,,. Consequently

T =T 4+ 4T =TTy + 6(T; — T)? T’ + - ©)

and on neglecting higher order terms, one obtains
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T, ~ T3 (4T, — 3T,)) , (i = 1,2). (4)
Using this (4) discerningly in the set of egns, (¢ find

160*T3, 0T gy 160* T3, 02T,

qr = -, S 23 (5)

r 3k* oy '’ ay 3k*  0y?

Taking into cognizance all the assumptions statetiee, therefore the equations
of mass conservation, momentum and energy balamcéhé Newtonian fluid
model in the two regions are posited as

M4 Th=0,i=12 (6)
02, S0 = LR EER (T, - T,y -, - g2 (1)
ﬁz%+vz%=_%%+%%+gﬁ(@— ) (8)
poCy (alz—;}+v12—_y_1) = E%—Z—?ﬂi@—ﬁy})z +L£a,% 9)
poCy (1 22 49, 2) = 0T 2y (%0’ (10)
Z_i’_,:o (11)

with the accompanying boundary and matching interfaonditions Ref. [29]:
%,(0) =0,T,(0) = Ty, u(D) =0, T,(D)=Tp (12a)

oT,
oy

() = B,(0), Ty () = To(), @52 (h) = n52 (kG2 (W) = k52 (h) (12b)

where,C, is the specific heat at constant pressure andtkeipermeability of the

porous mediunk is the thermal conductivityk effective thermal conductivity in
the porous mediumy is the viscosity of the clear fluidiz is the effective
viscosity of the fluid in porous mediury, is the acceleration due to gravityjs
the kinematic viscosity; whene = p,v. In addition, the Forchheimer coefficient
is designated b¥. .

It is importantly necessary to highlight furthersasptions invoked into this
present channel flow model through eqns. (12a)2b)1Specifically, the usual
no-slip velocity conditions at the channel wallsdanery different wall
temperatures have been presumed as presentedajp wWhile equality in fluid
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velocities, temperatures, shear stresses and thdéhmas across the porous-
substrate and substrate-free interface are unvieyi€d2b).

As the channel is infinitely long, the entrancereotion can be ignored so that
fully developed flow guarantees that the velocioynponentsy; = 0, (i =1, 2).
Under this claim, the equation of conservation @fsm(6) reduces té% =0
which integrates to giver; = u;(¥), a function of y only; while they —
component of the momentum balance equation (11) automayicathplifies to

) _ . _
give a_z as aconstant or p = p(x) a function ofx only. In summary we may
write

%= 0,5 = 5,(y), (i = 1,2). (13)

p= p(f)’vi = 0) %
For convenience, one may nondimensionalize the irengagoverning equations
alongside the boundary and matching interface ¢amdi by the following
parameters:

X=p Y=yt =g T =g (=12, a4

Following Ref. [6, 29, 40] the pressure gradierd #re reference velocity are

v _ _ 4p°
E —_ _A, uO —_— 4—8ﬂ. (15)

Substitution of egns. (13) and (15) into eqgns.tfBpugh (10) gives rise to the
following egns:

Region-1 (Porous Substrate Slab)

A n 9%, = v _ brug — 2
e T, —T,) ——u; — =0 1
PRI + gB(Ty m) i S| (16)
k 02T 1 9q o (9u;\? v o_

1o 0y P (SR 4 g2 = (17)
poCp 8% poCp Y poCp \ 0¥ KCp

Region-11 (Substrate-Free or Clear Fluid)

A 821, = _

L4 vt gB(T, — T) = 0 (18)
k0T, 1 04 v (3%)* _

poCp 892 poCp 0y + KCp (ay) =0 (19)
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Invoking the boundary condition (12a) on eqns. (463 (18), replacing the
effective viscosityz by u¢, and simplifying to have the following set of dexd/
boundary conditions:

__A_9B(T-T) (20)
Y7 %

dg| _ A 9B(TL-T.) d%u)

day’ |, 44 w3 dy’ | o

whereg, = % is the viscosity ratio.

Using (4) in (5), transferring the results into theergy balance eqgns. (17) and
(19), and then nondimensionalize with (14) the ltexy energy eqns. along with
the momentum balance eqgns. (16) and (18), simpdfdiscerningly to obtain

=48+ qi-c*y-o*Fif] (21
. 3NgBr, ,\2 3No’Br
T'=- - 22
" 3Ng it 3Ng, + 2" (22
— 1 "
T, = _;(48"' uz) (23)
" 3NBr ,
2= N +4(u2)2 (24)
Where
k _ D u,b, u,D
=—, g=——, F = , =,
23 K \/E s v Re v ]
(25)
Br = ,Uuo2 Gr:gﬁ(TD_-IE)) D’ _ _kk” _Gr
k(T,-T,) R o 4Tk

are respectively thermal conductivity ratio, perbiby parameter (or Darcy
number), Forchheimer number, Reynolds number, Bmark number, mixed
convection parameter, Stark number (or conductamhiation parameter) and
mixed convection parameter (or modified Grashof barn

Twice differentiatingT; in (21) with respect to y; and substituting theule into
(22), repeating the same fBy in (23) for use in (24) and after a rearrangenoént
terms and simplification, one obtains the followiset of fourth order nonlinear
ODEs:
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ul™ = K, (1+ 2F.u) U+ (K, + 2K,F) (U)° +K KU (26)
ul = K, (u)’ (27)
Where
2
1:?”E;\II\I/]Br , Kzzi, K3:3N/1Br (28)
@ +4 a 3N + 4

Further, the nondimensional boundary and matchedrfate conditions are
derived by utilizing eqn. (14) in (12a)(12b) and (21), and written as

" 48 A
u(0) = 0,7(0) = =3, W(0)="+=- (29)
a 29

up(1) = 0,T,(1) =5, uy(1) = —48—% (2%)

uy(a) = uy(a), T, (a) = Ty (a), qqui’(a) _02%(@ = U&( 3,
(29%c)

QA= Uy g (ua)-o*u(a) = U3

The pertinent engineering quantities of interest e skin-friction coefficients
and the Nusselt numbers. These quantities mayabedstespectively in terms of

the wall sheer stresses and the surface heat fasxes

T, Dq,, .
C,=—", Ny=——"—,(i=1,2) (30)
f pOUOZ k(TD _Tm)
Where
_ oy, ou, =0T, 0T,
Tw=H—| T,=H— ,d,=-k—| ,q,=—k= (31)
" y y:() ? ay y:l " 677 a_y?:].

They are transformed by (14) to yield their respecthondimensional forms
written as

C;(0)=C, Re=qu (0).G (U= G, Re= 4 (ONU (G;—, T (ONu (B~ T (
(32)
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3 Solution M ethods

3.1 Somelmportant Cases
3.1.1 Negligible Forchheimer Number

The situation where the effect of Forchheimer petniigy is inconsequential is
frequently associated with slowly streaming flowarregion constrained by the
parallel channel walls. In which cadg, = 0in this present work lends itself to the

equations reported by Ref. [29].

Pure Forced Convection (A =0)
In the case of purely forced convection, when tke br natural convection effect

is inconsequential, thed =0 implying that K, =K, =0. Eqgns. (26) and (27)
reduce to

U = K, (1+ 2Ru) U + 2K,F (U)’ | (33)

u =0 (34)

Although (33) still retains its nonlinearity naturéortunately (34) integrates
completely to yield

UL,=G+GY+GY+ GY (35)
wherein the constants c’s are determined undeprégent circumstance, ignoring
the buoyancy parameter in the boundary conditi@®a-). The dimensionless
temperature field Tin the porous substrate region-I, using (35) if)(2an thusly
be evaluated. If however D is imposed in (33), then

u™ = K,u" (36)
with the general solution

u =a,+ay+ as hinw y gcoshw ) (37)

where a’s are constants that can be determined &gnsnof the boundary
conditions (29a-c) and

w=K,
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3.1.2 Predominant Conduction-Radiation (N - o)

The case for which the conduction-radiation paramistis finitely large,
K, - ABr/ @, K, - ABrso that (26) and (27) take the form

ul™ = K, (1+ 2F.u) U+ (K, + 2K,F) (U)° +K KU
ul = K, (u)’ (38)

In this special case, the resulting BVPs (26)-(239a-b) are nonlinear.

3.1.3 Infinitely Large Viscosity and/or Thermal Conductivity Ratios
(2.0 - =)

The special case wherein the viscosity ratio antiferthermal conductivity ratio
are infinite in values, proffers the same solutampresented in section (3.1.2)

above. Thatis(@ — o and@, — «), (g - » org, - ).

3.2 Adomian Decomposition M ethod

Adopting the standard decomposition procedure wegoby Ref. [30], we
introduce linear differential operator and its irses

Ly =§—;, L;4(-)=Iif:j2(')d/7df7df7df7 (39)

It may be convenient to rearrange eqgns. (24) thro(@b) using (26) in
operational forms as follows

Lu, =g (Y- Ry- N 1) ( F1,2) (40)

where the LHS of (40) denotes the highest ordeivatve, g(y) is the source
function, Ry is the remainder of the linear term with derivatiwder less than 4,
while N(u) are nonlinear terms:

I

2
N(W) = 2K, Fud +( K+ 2IGR) (1) + KK, Ru= K (41a)

N(w,) = Kg(uz')z. Ry= g=0 (41b)

which may be represented by infinite series ofsthvealled Adomian polynomials

An, Bn, G, and D as:
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SA=UU, B =(U), Yc =(U)and Y D,=(V) (42a)

n=0 n=0

el (Ee]

such thatB, ,C, and D, are specified ag\, in (41b) forn = 0,1,2... and more
importantly & is a parameter introduced for convenience for i@, . . . and in
addition we have replaced by U andu, by V.

Applying the inverse operator on eqns. (26)-(2ng obtains

U(y)=U(0)+U'(0)y+ U"(o)y72+ U'"(o)i63+ L[ K,U"]+ L[ 2K, Fuu’]

L (K +2KF) (') [+ L KK 7] (43)
V() =v(0)+ W(0)+L V(9 +L v (9+ ¢[ V] (44)

More importantly, the general solutions proffergdADM are the infinite series
Hasan and Zhu [42]

o0 o0 N-1 N-1
U=>U, V=)V, along with N-th partial sums ®, =>U W, =>V,

n=0 n=0 n=0 n=0

where the n-terms ({)V, ) are determined recursively and the N-th padiahs
can be used to access the approximate exact s@uteratively depending on the
degree of accuracy so desired.

If (u,u,) are replaced byu,V)and K,, K,,K,substituted for, by means ¢88)
the computation algorithm can be started off aleva:

2
U0: Wyt _4_8+i y_+a2£ (45)
a 29| 2 6
1 1
Vo = a3+a4y+§asy2 +6aef- (46)
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Where

a,=U'(0),a,=U"(0),a,=V (0),a,=V' (0)a,=V" 0O)a,=V" (0 (47)

are unspecified boundary conditions whose valudsbgi determined on using
eqgns. (29a-c) and

for n > 1, the recursive relation takes the form

Ura(3)20,(0)+ U (0 y+Us(0 5 U305+ - U+ 2 Ficsfu ]

@

ABr _o° a2 ﬂa__
[z+2zFJLy[(Un)] . b A[u?] (48)
V(1) 2%(0)+ (05 ¥(0+5 w(9+22 g ] (@9)

The set of equations (45) through (49) encompabgetthe algorithm has been
coded in computer algebraic language using Maplesd®ware package for
simulations system of equations and then implendefde parametric values of
the emerging flow parameters. It is worthy to memtihat the task of evaluating
the unspecified parameters is very challenging.dileless, the substitutions of
(47) into our approximated exact solutions of Udaw, assisted by coded
program for simultaneous system of equations ldr@mselves to the much
needed boundary conditions.

4 Results and Discussion

41 Tabular Results

Table 1: Computations showing the results of variationaftedimensionless

parameter

Fs | Br|o|Gr|la| & | @ |N C,'(0) C,'(D Nu'(0) Nu'(2)

5 01| 1 1| 0.21.67]|1.25| 1 | 25.063692158 -26.80088570 | 4.407405645 -18.33788094
10 | 0.1 1 1| 0.2167|1.25| 1 | 22.6027360Q -24.69932556 | 4.440950002 -18.34064064
15| 01| 1 1| 021.67|1.25| 1 | 19.62407696 -22.47055555 | 4.490118062 -18.35247201
5 01} 1 1| 0.21.67|1.25| 1 | 25.06369220 -26.80088573 | 4.407405643 -18.33788093
5 02 1 1| 0.21.67|1.25| 1 | 25.34430791 -27.09682689 | 8.702375526 -41.09393358
5 05| 1 1| 0.21.67|1.25| 1 | 26.27435581 -28.08205469 | 27.65028150 -146.1121504
5 01| 1 1 | 0.2/1.67|1.25| 1 | 25.06369213 -26.80088569 | 4.407405658 -18.33788094
5 01| 3 1 |0.2/1.67|1.25| 1 | 12.63074708 -26.80088569 | 5.94572559| -18.55222718




94

A. Adeniyan et al.

5 |01]5 1 [02]167]125] 1 | 8.23668286Q -15.59976034 | 15.38221685 -20.64771733
5 0.1 1 1 0.2]1.67]1.25| 1 | 25.06369215 -26.80088570 | 4.407405688 -18.33788094
5 |01 1] 3 [0.2{1.67]1.25| 1 | 25.5414427Q -27.60712940 | 4.944551513 -21.84308128
5 101 1| 5 ]02]167]125] 1 | 26.09243508 -28.49245308 | 5.847235174 -27.58771449
5 |01 1 101167125 1 | 25.06369216 -26.80088571 | 5.112910441 -22.11381132
5 |01 1 102167125 1 | 13.59388778 -17.04334189 | 4.407405672 -18.33788094
5 |01 1 103167125 1 | 11.24412289 -13.73877226 | 3.988639742 -15.09554123
5101 1 1| 0.21.00|1.25] 1 | 24.68857691 -26.53177169 | 6.827805054 -19.17620205
5101 1 1| 0.2125|1.25] 1 | 24.86774891 -26.66027339 | 5.664992681 -18.77316570
5 |01 1 1] 02167125 1 | 25.06369217 -26.80088572 | 4.40740567Q0 -18.33788093
5 |01 1 1| 0.2167] 0.2 | 1 | 34.26510774 -18.40454854 | 4.90932129] -18.44310908
5101 3 1| 02167 0.4 | 1 | 32.18819185% -21.12470481 | 4.438061881 -18.33638321
5101 5 1] 02167] 0.6 | 1 | 31.6713645]1 -23.58843581 | 4.392925724 -18.34031768
5101 1 1| 0.21.67]1.25] 10 | 8.960610322 -42.55543785 | 25.3377258§ -27.09947642
5 |01 1 1| 0.21.67]1.25] 30 | 9.788189089 -47.01314704 | 25.38293091] -27.14939391
5 01] 1 1] 0.21.67]1.25| 50 | 9.974139451 -48.01698689 | 25.39291752 -27.16044228

The responses of the skin-friction coefficients dne Nusselt numbers due to
variations in the basic governing flow parametens anveiled in Table 1. As
observed, the skin-friction parameters intensifgately in values for both hot
and cold parallel plates when Brinkman number BrasBGof number Gr,
conductivity ratiogg and Forchheimer number Fs, in the rarfig@l< Fs< 0.0:
strengthen in values but all diminish absolutelynasonly Fs in the larger range
5< Fs<15 but also substrate thickness parameter improweine. Both wall
surface shear paramete@; (0)and C; (1) reduce absolutely as the permeability

parametero intensifies. On the other hand, the heat transfers at the walls
increase witha, Br and Gr. The Nusselt numbeiu'(0)and Nu'(1), and skin-

friction coefficients all reduce values as the peafility ratio ¢ increases while
all C; (0),C; (1) Nu'(0) and Nu'(2)can be increased due to intensification of the
radiation parameter N.

4.2 Graphical Results

The comparison in the velocity profiles between trerametric perturbation
method (PPM) and the Adomian decomposition meti#idM) is displayed in
Figure 2. As it can be seen, there appears tatbedeviation in the plots due to
the two methods. However, the merit of using apjnate analytic method over
the usual assumption of smallness in perturbatiararpeter has been found
advantageous besides the accompanying insuperadtleematical difficulties.
Figures 3-4 demonstrate the velocity profiles farying legend parameters Fs
and the substrate thickness a, for which eachlprwftreases from the zero wall
value with a kink at the fluid-substrate interfaoed then progressively continues
until a peak value is attained at about the cantemfter which it sequentially
loses values in the clear fluid region to stickthe hot plate, again with zero
velocity. The plots as revealed in Figures 5-10djte similar deformed
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curvilinear velocity profiles in resemblance to skoof the latter except that the
fluid accelerates as Gy, ¢ and Br increase but slightly as per the Stark rermb

N and Fs. The dimensionless temperature plots sigdime dimensionless
transverse distance is depicted in Figures 11HE/fltid temperature in substrate
and clear fluid regions rises when each of therpatars Gr, Br, N andr is
increased as per Figures 11-14 while Figures 154hveil rapid fall in
temperature, and consequently a reduction in teertal boundary layer prevails
as the permeability and thermal conductivity ratiesd substrate thickness
increase in values. Also increase in the Forchheim@émber consequently
features a little fall in temperature (not showm do space economy).

5. Conclusions

Adomian decomposition method (ADM) has been emplote investigate the
heat and momentum transfer for an electrically cetidg fluid streaming in a
vertical channel whose one of its parallel wallspexfectly attached a porous
substrate of definite width while the other walkHaeen subjected to a prescribed
wall temperature in the presence of a uniform warse magnetic field.
Introducing new dimensionless variables alongsidsimailarity variable, the
governing PDEs together with the fluid-substrate arall boundary conditions
are reduced to ODEs and then solved via ADM witlpMd. 8 written scripts for
implementing the numerical simulations. Our findinggveal among others the
following:

. Skin-friction coefficients and surface heat transfates increase in
magnitudes when Brinkman, Grashof and numbers dsas/eonductivity
ratio strengthen for low range Forchheimer numhertbey all reduce in
values for strengthening substrate thickness pdeanas well as large
range of Forchheimer numbers.

. Both wall surface shear parameters reduce absplatethe permeability
parameter intensifies. On the other hand, the thaasfer rates at the walls
increase with permeability parameter, Brinkman &rashof numbers.
Nusselt numbers and skin-friction coefficients @dbuce values as the
permeability ratiog increases while skin-friction coefficients as wad

the Nusselt numbers can be increased due to ifitatigin of the
radiation parameter or Stark number.

. Both substrate thickness parameter and Forchhemnmaber impede the
fluid velocity in either of the porous and cleamifl regions whereas the
Brinkman and Grashof numbers, the permeability @mtductivity ratios
can increase very rapidly velocity in both regiomkile the Stark and
Forchheimer numbers do very slowly.

. The fluid temperature in substrate and clear fhaigions rises when each
of the Grashof and Brinkman numbers, radiation @ondous medium
permeability parameters is increased.
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Figure 17: Temperature profiles, T vs. y
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