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Abstract
In this study, we investigated the (K,H),(K,KII), (H,KII)-Weingarten and

(K,H),(K,KII),(H,KII) and (K,H,KII)-linear Weingarten canal surfaces in
IR3.
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1 Preliminaries

In 1863, Julius Weingarten was able to make a major step forward in the topic
when he gave a class of surfaces isometric to a given surface of revolution.
Surface for which there is a definite functional relation between the principal
curvatures (which called curvature diagram) and also between the Gaussian
and the mean curvatures is called Weingarten surface. The knowledge of first
fundamental form I and second fundamental form II of a surface facilitates the
analysis and the classification of surface shape. Especially recent years, the
geometry of the second fundamental form II has become an important issue in
terms of investigating intrinsic and extrinsic geometric properties of the sur-
faces. Very recent results concerning the curvature properties associated to II
and other variational aspects can be found in [16]. One may associate to such
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a surface M geometrical objects measured by means of its second fundamental
form, as second Gaussian curvature KII , respectively. We are able to compute
KII of a surface by replacing the components of the first fundamental form E,
F, G by the components of the second fundamental form e, f, g respectively
in Brioschi formula which is given by Francesco Brioschi in the years of 1800’s.
Identification of the curvatures related to the second fundamental form of a
surface opened a door to research the new classes of Weingarten surfaces. Since
the middle of the last century, several geometers have studied Weingarten sur-
faces and linear Weingarten surfaces and obtained many interesting and valu-
able results [3, 4, 8, 9, 12, 13, 15]. For study of these surfaces, W. Kühnel and
G.Stamou investigate ruled (X,Y)-Weingarten surface in Euclidean 3-space E3

[12, 15]. Also,C.Baikoussis and Th. Koufogiorgos studied helicoidal (H,KII)-
Weingarten surfaces [1]. F.Dillen and W. Kühnel and F.Dillen and W.Sodsiri
gave a classification of ruled (X,Y)-Weingarten surface in Minkowski 3-space
E3
1, where X,Y∈ {K,H,KII}[3, 4, 5]. D. Koutroufiotis and Th.Koufogiorgos

and T. Hasanis investigate closed ovaloid (X,Y)-linear Weingarten surface in
E3 [10, 11]. D. W. Yoon and D.E.Blair and Th.Koufogiorgos classified ruled
(X,Y)-linear Weingarten surface in E3[2, 20]. D.W. Yoon and J.S.Ro studied
tubes in Euclidean 3-space which are (K,H),(K,KII),(H,KII)-Weingarten and
linear Weingarten tubes [14]. D. W. Yoon also studied the Weingarten and
linear Weingarten types translation surfaces in Euclidean 3-space.

Surface theory has been a popular topic for many researchers in many
aspects. Besides the using curves and surfaces, canal surfaces are the most
popular in computer aided geometric design such that designing models of
internal and external organs, preparing of terrain-infrastructures, constructing
of blending surfaces, reconstructing of shape, robotic path planning, etc. (see,
[6, 17, 18]).

In this study, we investigated the (K,H), (K,KII), (H,KII)-Weingarten and
(K,H), (K,KII), (H,KII) and (K,H,KII)− linear Weingarten canal surfaces
in IR3 by using the definition of general canal surfaces. During the study, we
faced a very large equations. It was not possible to give them all of course. So
we had to make our processes via a computer time to time.

Let f and g be smooth functions on a surface M in Euclidean 3-space
E3.The Jacobi function Φ (f, g) formed with f, g is defined by

Φ (f, g) = fsgt − ftgs

where fs = ∂f
∂s

and ft = ∂f
∂t

. In particular,a surface satisfying the Jacobi equa-
tion Φ(K,H) = 0 with respect to the Gaussian curvature K and the mean
curvature H on a surface M is called a Weingarten surface. Also, if a sur-
face satisfies a linear equation with respect to K and H, that is, aK+bH=c
(a, b, c ∈ IR, (a, b, c) 6= (0, 0, 0)), then it is said to be a linear Weingarten sur-
face [14].
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When the constant b=0, a linear Weingarten surface M reduces to a surface
with constant Gaussian curvature. When the constant a=0, a linear Wein-
garten surface M reduces to a surface with constant mean curvature. In such
a sense, the linear Weingarten surfaces can be regarded as a natural general-
ization of surfaces with constant Gaussian curvature or with constant mean
curvature [14].

If the second fundamental form of a surface M in E3 is non-degenerate,
then it is regarded as a new pseudo-Riemannian metric. Therefore, the Gaus-
sian curvature KII of non-degenerate second fundamental form can be defined
formally on the Riemannian or pseudo-Riemannian manifold (M,II).We call
the curvature KII the second Gaussian curvature on M [14].

Following the Jacobi equation and the linear equation with respect to the
Gaussian curvature K, the mean curvature H and the second Gaussian curva-
ture KII an interesting geometric question is raised. Classify all surfaces in
Euclidean 3-space satisfying the conditions

Φ(X, Y ) = 0

aX + bY = c

where (X, Y ) ∈ {K,H,KII} , X6=Y and (a, b, c) 6= (0, 0, 0). Let M be a surface
immersed in Euclidean 3-space, the first fundamental form of the surface M is
defined by

I = Edu2 + 2Fdudv +Gdv2

where E =< Ms,Ms >, F =< Ms,Mt >, G =< Mt,Mt > are the coefficients
of I. A surface is called degenerate if it has the degenerate first fundamental
form. The second fundamental form of M is given by

II = edu2 + 2fdudv + gdv2

where e = 〈Mss, n〉, f = 〈Mst, n〉, g = 〈Mtt, n〉 and n is the unit normal of M.
The Gaussian curvature K and the mean curvature H are given by, respectively

K =
eg − f 2

EG− F 2
, (1)

H =
Eg − 2Ff +Ge

2(EG− F 2)
. (2)

A regular surface is flat if and only if its Gaussian curvature vanishes identi-
cally. A minimal surface in IR3 is a regular surface for which mean curvature
vanishes identically [7].

Furthermore, the second Gaussian curvature KII of a surface is defined by

KII =
1

(|eg| − f 2)2
{p− q} . (3)
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where
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∣∣∣∣∣∣∣
−1

2
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A surface is called II-flat if the second Gaussian curvature vanishes identically
[19]. Having in mind the usual technique for computing the second mean
curvature by using the normal variation of the area functional one gets

HII = H − 1

2
√
|det(II)|

∑
i,j

∂

∂ui

(√
|det(II)|Lij ∂

∂uj

(
ln
√
|K|

))
(4)

where ui and uj stand for ”s” and ”t”, respectively, and (Lij) = (Lij)
−1 , where

Lij are the coefficients of second fundamental forms[16]. A surface is called
II-minimal if the second mean curvature vanishes identically[19].

A canal surface is an envelope of a 1-parameter family of surface. The
envelope of a 1-parameter family s −→ S2 (s) of spheres in IR3 is called a
canal surface[7]. The curve formed by the centers of the spheres is called
center curve of the canal surface. The radius of canal surface is the function r
such that r(s) is the radius of the sphere S2 (s) . Suppose that the center curve
of a canal surface is a unit speed curve α : I →IR3. Then the canal surface
can be parametrized by the formula

C (s, t) = α (s)−R (s)T −Q (s) cos (t)N +Q (s) sin (t)B (5)

where

R (s) = r(s)r′(s)Q (s) = ±r(s)
√

1− r′(s)2. (6)

All the tubes and the surfaces of revolution are subclass of the canal surface.

Theorem 1.1 The center curve of a canal surface M is a straight line if
and only if M is a surface of revolution for which no normal line to the surface
is parallel o the axis of revolution [7].

Theorem 1.2 The following conditions are equivalent for a canal surface
M: i. M is a tube parametrized by (5); ii. the radius of M is constant; iii. the
radius vector of each sphere in family that defines the canal surface M meets
the center curve orthogonally [7].
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Coefficients of first and second fundamental forms of canal surface are

E (s, t) = Q2κ2 cos2 (t) + p1κ cos (t) + 2QRκτ sin(t) + p2 (7)

F (s, t) = −Q (Rκ sin(t) +Qτ) (8)

G (s, t) = Q2 (9)

and

e (s, t) =
−1

r (s)
{E −Qκ cos (t)− p5} (10)

f (s, t) =
−1

r (s)
F (s, t) (11)

g (s, t) =
−1

r (s)
G (s, t) (12)

Let us take ψ (s, t) = det I and φ (s, t) = det II. Thus, we have

φ (s, t) =
1

r2

{
ψ (s, t)−Q3κ cos (t)−Q2p5

}
(13)

ψ (s, t) = Q2

{
κ2 (R2 +Q2) cos2 (t) + κp1 cos (t)

+1− 2R′ + (R′)2 + (Q′)2

}
. (14)

and

p1 = 2 (Q−QR′ +Q′R) (15)

p2 = Q2τ 2 +R2κ2 + (R′)
2

+ (Q′)
2 − 2R′ + 1 (16)

p3 = p1 −Q (17)

p4 = p2 − p5 (18)

p5 = (R′)
2

+ (Q′)
2 − 2R′ + 1 +RR′′ +QQ′′ (19)

If Q(s) = 0, then the first and the second fundamental forms are degenerate.
So the canal surface is degenerate surface and the radius is r(s) = ±s + c.
Furthermore, in the case κ(s) = 0 and 1− 2R′ + (R′)2 + (Q′)2 = 0, the radius
is

r(s) =
√
s2 − 2c1s+ 2c2.

Let the center curve be α (s) = (s, 0, 0). Then T = e1, N = e2 and B = e3.
Hence, R (s) = s − c1 and C (s, t) is the curve in the plane x = c1. The

conditions that r(s) 6= ±s+ c and
(
κ(s) = 0, r(s) 6=

√
s2 − 2c1s+ 2c2

)
are the

necessary conditions to define a non-degenerate canal surface with the equation
(6). At this point, we can write the following theorem.

Theorem 1.3 Let M be a canal surface with the center curve α(s) and the
radius r(s). If the center curve is a line then M is a regular surface in IR3 iff
the radius is r(s) 6= ±s+ c and r(s) 6=

√
s2 − 2c1s+ 2c2.
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Additionally, if φ (s, t) = 0 then M has degenerate second fundamental
form. A canal surface has degenerate second fundamental form if canal surface
is a surface of revolution with the radious r(s) =

√
s2 − 2c1s+ 2c2 or r(s) =

c1s + c2. From (1), (2) and (3), we obtained the Gauss curvature, mean
curvature such that

K(s, t) =
−1

ψ(s, t)r2

{
Q3κ cos (t) +Q2p5 − ψ(s, t)

}
(20)

H(s, t) =
1

2ψ(s, t)r2

{
Q3κ cos (t) +Q2p5 − 2ψ(s, t)

}
. (21)

2 Weingarten Type Canal Surfaces

Let M be a canal surface with the center curve α(s) and the radius r(s).
The existence of a Weingarten relation Φ(H,K) = 0 means that curvatures H
and K are functionally related, and since H and K are differentiable functions
depending on s and t, this implies the Jacobian condition Φ(H,K)=0. More
precisely the following condition

HtKs −HsKt = 0 (22)

needs to be satisfied. By using equations (20) and (21) we get

HtKs −HsKt =
1

2ψ3r4

2∑
i=0

hi cosi (t) (23)

where

h2 = −Q6κ2ψtr
′

h1 = −Q2

{
Q4κ2ψr′ sin(t) + 3Qκψ2ψtr

′ −Qκ′ψ2ψtr − 3Q′κψ2ψtr
+Qκψθtr

′ − 2Qκψtθr
′

}

h0 = ψθt
{
rψψs − r′(ψ2 − θ)

}
+ ψt

{
3θr′(ψ2 − 1

3
θ)− rψ2θs

}
+Q3ψκ

{
rψψs − r′(ψ2 − θ)

}
sin(t).

and θ = ψ − Q2p5. The Jacobian condition requires h0 = h1 = h2 = 0. From
h2 = 0, the cases κ = 0, ψt = 0, r′ = 0 are possible. If κ = 0 then, ψ = Q2p2
and h0 = h1 = 0 satisfies. If ψt = 0 then, from (14) κ = 0. If r = c then, from
h1 = 0 we have

c3ψtκ
′ = 0
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In this case, if ψt = 0 then, from (14) κ = 0 and so (20) satisfy. If κ =
a =constant then, h1 = h2 = 0 and h0 = 0 is

ψs(ac
3 sin(t) + θt)− ψtθs = 0.

Since the relation ac3 sin(t) + θt 6= 0 and ψt 6= 0 then, ψs = 0 and ψtθs = 0.
Also from (17), p1 = 2c, p5 = 1 and p2 = c2τ 2 + 1. Thus ψs = θs = 0 satisfy.
Hence we proved the following theorem.

Theorem 2.1 Let M be a regular canal surface then, M is a (H,K)-Weingarten
canal surface if M is one of the surfaces that surface of revolution, cyclinder
and tubular surface whose centered curve with non-zero constant curvature.

Thus, there are three cases for (5) such as (r′ 6= 0, κ = 0) , (r′ = 0, κ 6= 0)
and (r′ = 0, κ = 0), If κ = 0 then, all of the coefficients hi in (23) are zero so
the condition (22) is satisfy. If r′ = 0 and κ 6= 0 then r(s) = c 6= 0 and (5)
turns to a tubular suface such that

C (s, t) = α (s)∓ c cos (t)N ± c sin (t)B. (24)

If κ = 0 then let assume that the center curve is the x−axis (5) turns to a
surface of revolution and a cylinder such that

C (s, t) =
(
s− r(s)r′(s),∓r(s)

√
1− r′(s)2 cos (t) ,±r(s)

√
1− r′(s)2 sin (t)

)
(25)

and
C (s, t) = (s,∓c cos (t) ,±c sin (t)) (26)

respectively.

From (3), we can write the term p as

p =
(
−1

2
ett + fst −

1

2
gss

)
φ+

(
ft −

1

2
gs

){(
fs −

1

2
et

)
f − 1

2
esg

}
(27)

by taking gt = 0. From (21), (27) and with the aid of prog 2, the Jacobi
function Φ(H,KII) is obtained a polynomial expressions in cos(t) such that

Ht (KII)s −Hs (KII)t =
1

denom

6∑
i=0

gi cosi (t) . (28)

For n=6 in Prog.2, g6 is

g6 = −Q13κ5r4ψt {4Qκr′ − 3Qκ′r − 5Q′κr} .

The Jacobian condition Φ(H,KII)=0 requires g0 = g1 = ...g6 = 0. In the case
κ = 0, g1 = ...g6 = 0 satisfies. By using prog.1 for κ = τ = 0, it is easy to see
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that g0 = 0 satisfy. If ψt = 0 then, from (8) we obtain κ = 0 so Φ(H,KII)=0
satisfy also. If 4Qκr′ − 3Qκ′r − 5Q′κr = 0 then, from (6) and (6), we obtain

5κrr′r′′ + ((r′)
2 − 1)(3rκ′ + r′κ) = 0. (29)

It may be hard to solve (29), but ofcourse we consider the special solutions of
(29). If r is constant then from (29) κ is non-zero constant. If r = c1s + c2
then, (29) turn to

((c1)
2 − 1)(3rκ′ + c1κ) = 0

and the solutions are c1 = ±1(M is not regular) or

κ =
c3
r1/3

.

If κ = c1 is non-zero constant in (29) then, (29) turn to

rr′(5rr′′ + (r′)2 − 1) = 0

and the real solution is r =constant6= ±1. Thus we can give the following
theorem.

Theorem 2.2 Let M be a regular (H,KII)-Weingarten canal surface then
followings are ture for M.

i.M is the surface of revolution,
ii.M is a canal surface with r = c1s + c2,(c1 6= ±1) and with the centered

curve whose curvature is κ = c3
r1/3

,
iii.M is a tubular surface whose centered curve with non-zero constant cur-

vature.

Jacobi function Φ(K,KII) is obtained a polynomial expressions in cos(t) by
using (20) and (27) as follows.

Kt (KII)s −Ks (KII)t =
1

denom

6∑
i=0

fi cosi (t) (30)

Jacobian condition Φ(K,KII)=0 requires f0 = f1 = ...f6 = 0.For i = 6 in
Prog.3, f6 is the same as g6 in (28).

f6 = Q13κ5r4ψt {4Qκr′ − 3Qκ′r − 5Q′κr} .

If κ = 0 then, Φ(K,KII)=0 satisfy. If ψt = 0 then, from (14) κ = 0 and
so Φ(K,KII)=0 satisfy. If 4Qκr′ − 3Qκ′r − 5Q′κr = 0 then, we obtain the
same differential equation (29) and we consider the special solution again.
If r is constant then from (29) κ is non-zero constant. In this case, using
Prog.1 and Prog.3, we obtain f6 = f5 = f4 = 0 and f3 = −3κ5r2τ ′ sin2(t),
f2 = −6κ4rτ ′ sin2(t), f1 = κ3(4κ2r2 − 1)τ ′ sin2(t), f0 = 2κ4rτ ′ sin2(t). The
Jacobien condition reguires that τ is constant. If r = c1s + c2 then, κ = c3

r1/3

and also, Φ(K,KII)=0 satisfy. Thus, we can write the following theorem.



56 Yılmaz Tunçer et al.

Theorem 2.3 Let M be a regular (K,KII)-Weingarten canal surface then
followings are ture for M.

i.M is the surface of revolution,
ii.M is a canal surface with r = c1s + c2,(c1 6= ±1) and with the centered

curve whose curvature is κ = c3
r1/3

,
iii.M is a tubular surface whose centered curve is cylindirical helix.

3 Linear Weingarten Type Canal Surfaces

Let M be a canal surface with the center curve α(s) and the radius r(s) then
M is called (K,H)−linear Weingarten surface if Gaussian and the mean cur-
vatures of M satisfies a linear equation with the constants a, b and d such
that

aK + bH = d.

By using equations (20) and (21), we get the relation between K(s, t) and
H(s, t) such as

H (s, t) +
1

2
K (s, t) = − 1

2r2
. (31)

Thus we have the following theorem.

Theorem 3.1 Let M be a regular canal surface then M is (K,H)− linear
Weingarten surface if and only if M is a tubular surface.

From (4),we can write

denom(δ)
√
µ1φHII − denom(δ)

√
µ1φH =

numer(δ)

2
(32)

where δ = δ1 + δ2,

δ1 =
∂

∂s

(√
µ1φL

11 ∂

∂s

(
ln
√
µ2K

)
+
√
µ1φL

12 ∂

∂t

(
ln
√
µ2K

))

δ2 =
∂

∂t

(√
µ1φL

21 ∂

∂s

(
ln
√
µ2K

)
+
√
µ1φL

22 ∂

∂t

(
ln
√
µ2K

))
,

µ1 =

{
1
−1

; ifφ > 0
; ifφ < 0

andµ2 =

{
1
−1

; ifK > 0
; ifK < 0

and with the aid of Prog.4

denom(δ) = 4φ2ψ2r2
√
µ1φ.

Thus, (32) turn to

4φ3ψ2r2HII − 4φ3ψ2r2H =
numer(δ)

2
(33)
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In this case, from (33), if φ3ψ2r2 and numer(δ) are constant then, we can say
that there is a linear relation between HII and H. By using (13), (14) and
Prog.5

(r2φ3ψ2)t =
1

r4
sin(x)

9∑
i=0

mi cosi(x) (34)

for i = 9

m9 = −10Q10κ10(Q2 +R2)5

from m9 = 0 then κ = 0 and also all of mi are zero. In the case of κ = 0,
r2φ3ψ2 is

r2φ3ψ2 =
1

r4
Q10(p2 − p5)3(p2)2. (35)

By using prog.5 and 6, the real non-zero solutions of (r2φ3ψ2)s = 0 are r =
±
√
s2 − 2c1s+ 2c2 and r = c1s + c2. For first r, M is degenerate, and for the

second r, φ = 0. Thus we have the following theorem.

Theorem 3.2 Let M be a regular canal surface then, there is no (H,HII)-
linear Weingarten surface in IR3.

From (1),

φ (s, t) = ψ (s, t)K (s, t) ,

and by using (13), (20) and (21), we get

φ2KII − AψK = (B − q) (36)

where

A =
(
−1

2
ett + fst −

1

2
gss

)
and

B =
(
ft −

1

2
gs

){(
fs −

1

2
et

)
f − 1

2
esg

}
.

If φ, r4Aψ and r4(B − q) are non-zero constans then, we called M is (KII ,K)-
linear Weingarten canal surface.

∂φ

∂t
= 0

κQ2

r4

{
−2κ

(
R2 +Q2

)
cos (t)− (p1 −Q)

}
sin (t) = 0

Thus, κ = 0 and for κ = 0,

φ =
−Q2

r4
{RR′′ +QQ′′}
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and by using (1) and (2), we obtain

−Q2

r4
{RR′′ +QQ′′} = rr′′((r′)2 + rr′′ − 1)

since ∂φ
∂s

= 0 then, −Q
2

r4
{RR′′ +QQ′′} = c =constant so we can write

rr′′((r′)2 + rr′′ − 1) = c

There are the only three real non-zero solution of last equation for c = 0
such that, r = ±

√
s2 − 2c1s+ 2c2 and r = c1s + c2 but in the case of r =

±
√
s2 − 2c1s+ 2c2 and r = c1s + c2, M have degenerate first and second fun-

damental forms. Thus, we can give the following theorem.

Theorem 3.3 Let M be a regular canal surface then, there is no (K,KII)-
linear Weingarten surface in IR3.

By substituting H in the equation (31) into (36), we get

8φ3ψ2r2HII + 4φ3ψ2r2K = numer(δ)− 4φ3ψ2r2

r2
(37)

and also, we found before that φ = 0 when φ3ψ2r2 is a constant then, we have
the following theorem.

Theorem 3.4 Let M be a regular canal surface then, there is no (K,HII)-
linear Weingarten surface in IR3.

Similarly, by substituting K in the equation (31) into (36), we get

φ2r2KII + 2r2AψH = r2(B − q)− Aψ. (38)

Also, we found before that M have degenerate first and second fundamental
forms when {ψ (s, t)−Q3κ cos (t)−Q2p5} is a constant then, we have the
following theorem.

Theorem 3.5 Let M be a regular canal surface then, there is no (H,KII)-
linear Weingarten surface in IR3.

We can find the relation between KII and HII by using (36) and (37) as
follow

8φ3ψ2r2HII +
4φ3ψ {φr2}2

r2A
KII = numer(δ) + Γ (39)

where Γ = 4φ3ψ(r2(B−q)−Aψ)
A

. Since φ = 0 when φ3ψ2r2 is a constant then, we
give the following theorem.
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Theorem 3.6 Let M be a regular canal surface then, there is no (KII ,HII)-
linear Weingarten surface in IR3.

It easy to obtain the relations of trible of {H,K,HII , KII} . From (31) and
(33),

2(1− 4γ1)H +K + 8γ1HII =
r2numer(δ)− 1

r2
, (40)

from (31) and (33),

2H + (1− 2r4Aψ)K + 2(γ2)
2KII =

2r6(B − q)− 1

r2
, (41)

from (36) and (37),

ψr2(4φ3ψ−r2A)K+8γ1HII +(γ2)
2KII = numer(δ)+r4(B−q)−4φ3ψ2, (42)

from (38) and (39),

2r4AψH + 8γ1HII +
(4φ3ψ + r2A)(γ2)

2

r2A
KII = numer(δ) + γ3 (43)

where

γ1 = φ3ψ2r2

γ2 = φr2

γ3 =
(4φ3ψ + Ar2)(r2(B − q)− Aψ)

A
.

In (40), (41), (42) and (43), the conditions γ1 and γ2 are constants requires
the first and the second fundamental forms are degenerate. Thus, we have the
following theorem.

Theorem 3.7 Let M be a regular canal surface then, there is no (H,K,HII),
(H,K,KII), (K,KII ,HII) and (H,KII ,HII)-linear Weingarten surfaces in IR3.

Finally, from (40) and (41) we get

4(1−2γ1))H+2(1−r4Aψ)K+8γ1HII+2(γ2)
2KII =

r2numer(δ) + 2r6(B − q)− 2

r2

and the condition γ1 is constant requires the second fundamental form is de-
generate. Thus, we have the following theorem.

Theorem 3.8 Let M be a regular canal surface then, there is no (H,K,HII ,KII)-
linear Weingarten surfaces in IR3.
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Prog.1

R(s):=r(s)*diff(r(s),s):
Q(s):=r(s)*((1-diff(r(s),s)ˆ2)ˆ(1/2)):
G(s):=(Q(s))ˆ2:
p1(s):=2*Q(s)+2*R(s)*diff(Q(s),s)-2*Q(s)*diff(R(s),s):
p2(s):=(Q(s)ˆ2)*(tau(s)ˆ2)+(R(s)ˆ2)*(kappa(s)ˆ2)+diff(R(s),s)ˆ2+diff(Q(s),s)ˆ2-
2*diff(R(s),s)+1;
p3(s):=p1(s)-Q(s):
p5(s):=diff(R(s),s)ˆ2+diff(Q(s),s)ˆ2-2*diff(R(s),s)+1+R(s)*diff(diff(R(s),s),s)
+Q(s)*diff(diff(Q(s),s),s);
p4(s):=p2(s)-p5(s):
E(s,t):=(Q(s)ˆ2)*(kappa(s)ˆ2)*(cos(t))ˆ2+p1(s)*kappa(s)*cos(t)
+2*Q(s)*R(s)*kappa(s)*tau(s)*sin(t)+p2(s);
F(s,t):=-Q(s)*R(s)*kappa(s)*sin(t)-G(s)*tau(s):
psi(s,t):=E(s,t)*G(s)-(F(s,t))ˆ2:
theta(s,t):=-(Q(s)ˆ2)*p5(s)+psi(s,t):

Prog.2

G(s):=(Q(s))ˆ2;
e:=(-1/r(s))*(E(s,t)-Q(s)*kappa(s)*cos(t)-p5(s)):
f:=(-1/r(s))*F(s,t):
g:=(-1/r(s))*G(s):
es:=diff(e,s):
fs:=diff(f,s):
gs:=diff(g,s):
ess:=diff(diff(e,s),s):
fss:=diff(diff(f,s),s):
gss:=diff(diff(g,s),s):
et:=diff(e,t):
ft:=diff(f,t):
gt:=diff(g,t):
ett:=diff(diff(e,t),t):
ftt:=diff(diff(f,t),t):
gtt:=diff(diff(g,t),t):
est:=diff(diff(e,s),t):
fst:=diff(diff(f,s),t):
gst:=diff(diff(g,s),t):
ets:=diff(diff(e,t),s):
fts:=diff(diff(f,t),s):
gts:=diff(diff(g,t),s):
phi(s,t):=(1/(r(s))ˆ2)*(psi(s,t)-(Q(s)ˆ3)*kappa(s)*cos(t)
-(Q(s)ˆ2)*p5(s)):



Weingarten and Linear Weingarten Canal Surfaces... 61

V1:=Matrix([[phi(s,t)*((-ett/2)+fst-(gss/2)),0],[0,phi(s,t)*((-ett/2)+fst-(gss/2))]])
+Matrix([[ft-(gs/2),((fs-(et/2))*e-(f*es/2))],[(gt/2),(fs-(et/2))*f-(g*es/2)]]):
V2:=Matrix([[0,et/2,gs/2],[et/2,e,f],[gs/2,f,g]]):
v1:=LinearAlgebra:-Determinant(V1):
v2:=LinearAlgebra:-Determinant(V2):
K2:=simplify((v1-v2)/(phi(s,t))):
H:=-1/2*(-Q(s)ˆ3*kappa(s)*cos(t)+theta(s,t)+psi(s,t)ˆ2)/psi(s,t)/r(s):
simplify(coeff(numer(subs(sin(t)=B,subs(cos(t)=A,simplify(diff(H,t)*diff(K2,s)
-diff(H,s)*diff(K2,t))))),A,n),’size’);

Prog.3

G(s):=(Q(s))ˆ2;
e:=(-1/r(s))*(E(s,t)-Q(s)*kappa(s)*cos(t)-p5(s)):
f:=(-1/r(s))*F(s,t):
g:=(-1/r(s))*G(s):
es:=diff(e,s):
fs:=diff(f,s):
gs:=diff(g,s):
ess:=diff(diff(e,s),s):
fss:=diff(diff(f,s),s):
gss:=diff(diff(g,s),s):
et:=diff(e,t):
ft:=diff(f,t):
gt:=diff(g,t):
ett:=diff(diff(e,t),t):
ftt:=diff(diff(f,t),t):
gtt:=diff(diff(g,t),t):
est:=diff(diff(e,s),t):
fst:=diff(diff(f,s),t):
gst:=diff(diff(g,s),t):
ets:=diff(diff(e,t),s):
fts:=diff(diff(f,t),s):
gts:=diff(diff(g,t),s):
phi(s,t):=(1/(r(s))ˆ2)*(psi(s,t)-(Q(s)ˆ3)*kappa(s)*cos(t)
-(Q(s)ˆ2)*p5(s)):
V1 := Matrix([[phi(s,t)*((-ett/2)+fst-(gss/2)),0],[0,phi(s,t)*((-ett/2)+fst-(gss/2))]])
+Matrix([[ft-(gs/2),((fs-(et/2))*e-(f*es/2))],[(gt/2),(fs-(et/2))*f-(g*es/2)]]):
V2 := Matrix([[0,et/2,gs/2],[et/2,e,f],[gs/2,f,g]]):
v1 := LinearAlgebra:-Determinant(V1):
v2 := LinearAlgebra:-Determinant(V2):
K2:=simplify((v1-v2)/(phi(s,t))):
K:=1/psi(s,t)*(-Q(s)ˆ3*kappa(s)*cos(t)+theta(s,t))/r(s)ˆ2:
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simplify(coeff(numer(subs(sin(t)=B,subs(cos(t)=A,simplify(diff(K,t)*diff(K2,s)
-diff(K,s)*diff(K2,t))))),A,i),’size’);

Prog.4

G(s):=(Q(s))ˆ2:
e:=(-1/r(s))*(E(s,t)-Q(s)*kappa(s)*cos(t)-p5(s)):
f:=(-1/r(s))*F(s,t):
g:=(-1/r(s))*G(s):
K:=phi(s,t)/psi(s,t);
L11:=g/(phi(s,t)):
L12:=-f/(phi(s,t)):
L21:=-f/(phi(s,t)):
L22:=e/(phi(s,t)):
delta1:=simplify(diff(((mu1*(phi(s,t)))ˆ(1/2))*L11*diff(ln((mu2*K)ˆ(1/2)),s)
+((mu1*(phi(s,t)))ˆ(1/2))*L12*diff(ln((mu2*K)ˆ(1/2)),t),s)):
delta2:=simplify(diff(((mu1*(phi(s,t)))ˆ(1/2))*L21*diff(ln((mu2*K)ˆ(1/2)),s)
+((mu1*(phi(s,t)))ˆ(1/2))*L22*diff(ln((mu2*K)ˆ(1/2)),t),t)):
denom(delta1+delta2);

Prog.5

E(s,t):=(Q(s)ˆ2)*(kappa(s)ˆ2)*(cos(t))ˆ2+p1(s)*kappa(s)*cos(t)
+2*Q(s)*R(s)*kappa(s)*tau(s)*sin(t)+p2(s):
F(s,t):=-Q(s)*R(s)*kappa(s)*sin(t)-G(s)*tau(s):
G(s):=(Q(s))ˆ2:
psi(s,t):=E(s,t)*G(s)-F(s,t)ˆ2:
phi(s,t):=simplify((1/(r(s))ˆ2)*(psi(s,t)-(Q(s)ˆ3)*kappa(s)*cos(t)
-(Q(s)ˆ2)*p5(s))):
simplify(coeff(numer(subs(sin(t)=B,subs(cos(t)=A,
diff(expand(simplify(phi(s,t)ˆ3*psi(s,t)ˆ2*r(s)ˆ2)),t)))),A,9),’size’);

Prog.6

dsolve(diff(expand(simplify(phi(s,t)ˆ3*psi(s,t)ˆ2*r(s)ˆ2)),s), { r(s) } );
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