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Abstract 

     In this paper we present another class of �-�� called ����-�� and study 
their fundamental properties in nano topological spaces. We also present ����-
continuous maps with some of its properties.  

     Keywords: ����-��, ����-continuous maps, ����-irresolute maps.      

 

1 Introduction 
 
M.L. Thivagar and C. Richard [4] presented nano topological space (or simply 
���) as for a subset 	 of a universe which is characterized regarding lower and 
upper approximations of 	. He has additionally characterized nano closed sets (in 
short N-CS), nano interior and nano closure of a set. In 2014, Ng-CS was presented 
by K. Bhuvaneswari and K.M. Gnanapriya [1]. R.T. Nachiyar and K. 
Bhuvaneswari [6] presented the idea of N�g-CS and Ng�-CS in ���. The purpose 
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of this paper is to present the concept of Ng�g-CS and study their essential 
properties in ���. We likewise present Ng�g-continuous maps by utilizing Ng�g-
CS and concentrate some of their principal properties.  
 

2 Preliminaries 
 
Throughout this paper, ��, �ℛ�	��, ��, �ℛ���� and ��, �ℛ���� (or simply �, � 
and �) always mean ��� on which no separation axioms are expected unless 
generally specified. For a set � in a ��� ��, �ℛ�	��, N�����, N������ and 
� = � − � denote the nano closure of �, the nano interior of � and the nano 
complement of � respectively.  
 
Definition 2.1 [8]: Let � be a non-empty finite set of objects called the universe 
and ℛ be an equivalence relation on � named as the indiscernibility relation. 
Elements belonging to the same equivalence class are said to be indiscernible 
with one another. The pair ��, ℛ� is said to be the approximation space. 
 
Remark 2.2 [8]: Let ��, ℛ� be an approximation space and 	 ⊆ �. Then: 
 
(i)  The lower approximation of 	 with respect to ℛ is the set of all objects, 

which can be for certain classified as 	 with respect to ℛ and it is denoted 
by $ℛ�	�. That is, $ℛ�	� = ⋃{ℛ�'�: ℛ�'� ⊆ 	, ' ∈ �}, where ℛ�'� 
denotes the equivalence class determined by '. 

(ii)  The upper approximation of 	 with respect to ℛ is the set of all objects, 
which can be possibly classified as 	 with respect to ℛ and it is denoted 
by +ℛ�	�. That is, +ℛ�	� = ⋃{ℛ�'�: ℛ�'�⋂	 ≠ ., ' ∈ �}. 

(iii)  The boundary region of 	 with respect to ℛ is the set of all objects, which 
can be classified neither as 	 nor as not 	 with respect to ℛ and it is 
denoted by /ℛ�	�. That is, /ℛ�	� = +ℛ�	� − $ℛ�	�. 

 
Proposition 2.3 [3]: If ��, ℛ� is an approximation space and 	, � ⊆ �. Then: 
 
(i) $ℛ�	� ⊆ 	 ⊆ +ℛ�	�. 
 
(ii) $ℛ�.� = +ℛ�.� = . and $ℛ��� = +ℛ��� = �. 
 
(iii) +ℛ�	⋃�� = +ℛ�	�⋃+ℛ���. 
 
(iv) +ℛ�	⋂�� ⊆ +ℛ�	�⋂+ℛ���. 
 
(v) $ℛ�	⋃�� ⊇ $ℛ�	�⋃$ℛ���. 
 
(vi) $ℛ�	⋂�� = $ℛ�	�⋂$ℛ���. 
 
(vii) $ℛ�	� ⊆ $ℛ��� and +ℛ�	� ⊆ +ℛ��� whenever 	 ⊆ �. 
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(viii) +ℛ�	 � = �$ℛ�	��  and $ℛ�	 � = �+ℛ�	�� . 
 
(ix) +ℛ+ℛ�	� = $ℛ+ℛ�	� = +ℛ�	�. 
 
(x) $ℛ$ℛ�	� = +ℛ$ℛ�	� = $ℛ�	�. 
 
Definition 2.4 [4]: Let � be the universe, ℛ be an equivalence relation on � and 
�ℛ�	� = {., �, $ℛ�	�, +ℛ�	�, /ℛ�	�} where 	 ⊆ �. Then by proposition (2.3), 
�ℛ�	� satisfies the following axioms: 
 
(i)  ., � ∈ �ℛ�	�. 
(ii)  The union of the elements of any subcollection of �ℛ�	� is in �ℛ�	�. 
(iii)  The intersection of the elements of any finite sub collection of �ℛ�	� is in 

�ℛ�	�. 
 
That is, �ℛ�	� is a topology on � called the nano topology on � with respect to 	 
and the pair ��, �ℛ�	�� is called a nano topological space (or simply ���). The 
elements of �ℛ�	� are called nano open sets (in short �-1�). 
 
Remark 2.5 [4]: Let ��, �ℛ�	�� be a ��� with respect to 	 where 	 ⊆ � and ℛ 
be an equivalence relation on �. Then �/ℛ denotes the family of equivalence 
classes of � by ℛ. 
 
Definition 2.6 [4]: A subset � of a ��� ��, �ℛ�	�� is said to be a nano �-open set 
(in short ��-1�) if � ⊆ ������������������ and a nano �-closed set (in short 
��-��) if ����������������� ⊆ �. The nano �-closure of a set � of a ��� 
��, �ℛ�	�� is the intersection of all ��-�� that contain � and is denoted by 
�������. 
 
Definition 2.7 [1]: A subset � of a ��� ��, �ℛ�	�� is said to be a nano 
generalized closed set (in short ��-��) if ������ ⊆ ℳ whenever � ⊆ ℳ and ℳ 
is a �-1� in ��, �ℛ�	��. The complement of a ��-�� is a ��-1� in ��, �ℛ�	��. 
 
Definition 2.8 [6]: A subset � of a ��� ��, �ℛ�	�� is said to be a nano ��-closed 
set (in short ���-��) if ������� ⊆ ℳ whenever � ⊆ ℳ and ℳ is a �-1� in 
��, �ℛ�	��. The complement of a ���-�� is a ���-1� in ��, �ℛ�	��. 
 
Definition 2.9 [6]: A subset � of a ��� ��, �ℛ�	�� is said to be a nano ��-closed 
set (in short ���-��) if ������� ⊆ ℳ whenever � ⊆ ℳ and ℳ is a ��-1� in 
��, �ℛ�	��. The complement of a ���-�� is a ���-1� in ��, �ℛ�	��. 
 
Theorem 2.10 [4, 6]: In a ��� ��, �ℛ�	��, then the following statements hold and 
the contrary of each statement is not true: 
 
(i) Every �-1� (resp. �-��) is a ��-1� (resp. ��-��). 
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(ii) Every �-1� (resp. �-��) is a ��-1� (resp. ��-��). 
 
(iii) Every ��-1� (resp. ��-��) is a ���-1� (resp. ���-��). 
 
(iv) Every ��-1� (resp. ��-��) is a ���-1� (resp. ���-��). 
 
(v) Every ���-1� (resp. ���-��) is a ���-1� (resp. ���-��). 
 
Definition 2.11: Let ��, �ℛ�	�� and ��, �ℛ���� be ���. Then the map 
ℎ: ��, �ℛ�	�� ⟶ ��, �ℛ���� is called: 
 
(i)  nano continuous (in short �-continuous) [5] if ℎ78�9� is a �-1� 

(resp. �-��) in ��, �ℛ�	��, for each �-1� (resp. �-��) 9 in ��, �ℛ����. 
(ii)  nano �-continuous (in short ��-continuous) [7] if ℎ78�9� is a ��-1� 

(resp. ��-��) in ��, �ℛ�	��, for each �-1� (resp. �-��) 9 in 
��, �ℛ����. 

(iii)  nano �-continuous (in short ��-continuous) [2] if ℎ78�9� is a ��-1� 
(resp. ��-��) in ��, �ℛ�	��, for each �-1� (resp. �-��) 9 in 
��, �ℛ����. 

(iv)  nano ��-continuous (in short ���-continuous) [7] if ℎ78�9� is a ���-
1� (resp. ���-��) in ��, �ℛ�	��, for each �-1� (resp. �-��) 9 in 
��, �ℛ����. 

(v)  nano ��-continuous (in short ���-continuous) [7] if ℎ78�9� is a ���-
1� (resp. ���-��) in ��, �ℛ�	��, for each �-1� (resp. �-��) 9 in 
��, �ℛ����. 

 
Theorem 2.12 [2, 7]: Let ℎ: ��, �ℛ�	�� ⟶ ��, �ℛ���� be a map. Then the 
following statements hold and the contrary of each statement is not true: 
 
(i) Every �-continuous map is a ��-continuous. 
(ii) Every �-continuous map is a ��-continuous. 
(iii)  Every ��-continuous map is a ���-continuous. 
(iv)  Every ��-continuous map is a ���-continuous. 
(v)  Every ���-continuous map is a ���-continuous. 
 

3 Nano Generalized :;-Closed Sets 
 
In this section we present and study the nano generalized :;-closed sets and some 
of its properties. 
 
Definition 3.1: A subset � of a ��� ��, �ℛ�	�� is said to be a nano generalized 
��-closed set (in short ����-��) if ������ ⊆ ℳ whenever � ⊆ ℳ and ℳ is a 
���-1� in ��, �ℛ�	��. The family of all ����-�� of a ��� ��, �ℛ�	�� is 
denoted by ����-���, 	�. 
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Definition 3.2: The intersection of all ����-�� in a ��� ��, �ℛ�	�� containing 
� is called nano ���-closure of � and is denoted by ����-�����, ����-
����� = ⋂{<: � ⊆ <, < is a ����-��}. 
 
Theorem 3.3: In a ��� ��, �ℛ�	��, the following statements are true: 
 
(i) Every �-�� is a ����-��. 
 
(ii) Every ����-�� is a ��-��. 
 
(iii) Every ����-�� is a ���-��. 
 
(iv) Every ����-�� is a ���-��. 
 
Proof: 
 
(i)Let � be a N-CS in a ��� ��, �ℛ�	�� and let ℳ be any N�g-OS containing �. 
Then N����� = � ⊆ ℳ. Hence, � is a Ng�g-CS. 
 
(ii) Let � be a Ng�g-CS in a ��� ��, �ℛ�	�� and let ℳ be any N-OS containing �. 
By theorem (2.10); ℳ is a N�g-OS in ��, �ℛ�	��. Since � is a Ng�g-CS, we have 
N����� ⊆ ℳ. Hence, � is a Ng-CS. 
 
(iii) Let � be a Ng�g-CS in a ��� ��, �ℛ�	�� and let ℳ be any N-OS containing 
�. By theorem (2.10); ℳ is a N�g-OS in ��, �ℛ�	��. Since � is a Ng�g-CS, we 
have N������ ⊆ N����� ⊆ ℳ. Hence, � is a N�g-CS. 
 
(iv) Let � be a Ng�g-CS in a ��� ��, �ℛ�	�� and let ℳ be any N�-OS containing 
�. By theorem (2.10); ℳ is a N�g-OS in ��, �ℛ�	��. Since � is a Ng�g-CS, we 
have N������ ⊆ N����� ⊆ ℳ. Hence, � is a Ng�-CS. 
 
The contrary of the above theorem need not be true as appeared in the following 
examples. 
 
Example 3.4: Let  � = {>, ?, @, �} with �/ℛ = {{>}, {@}, {?, �}} and 	 = {>, ?}.  
Let �ℛ�	� = {., {>}, {?, �}, {>, ?, �}, �} be a ���. Then the set {>, ?, @} is a ����-
�� but not �-��. 
 
Example 3.5: Let � = {>, ?, @, �, �} with �/ℛ = {{�}, {>, ?}, {@, �}} and 	 =
{>, �}. Let �ℛ�	� = {., {�}, {>, ?}, {>, ?, �}, �} be a ���. Then the set {>, @, �} is a 
��-�� but not ����-��. 
 
Example 3.6: Let � = {�, A, B, C} with �/ℛ = {{�}, {B}, {A, C}} and 	 = {�, A}.  
Let �ℛ�	� = {., {�}, {A, C}, {�, A, C}, �} be a ���. Then the set {�, B} is a ���-�� 
and hence ���-�� but not ����-��. 
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Definition 3.7: A subset � of a ��� ��, �ℛ�	�� is said to be a nano generalized 
��-open set (in short ����-1�) iff � − � is a ����-��. The family of all 
����-1� of a ��� ��, �ℛ�	�� is denoted by ����-1��, 	�. 
 
Definition 3.8: The union of all ����-1� in a ��� ��, �ℛ�	�� contained in � is 
called nano ���-interior of � and is denoted by ����-������, ����-������ =
⋃{<: � ⊇ <, < is a ����-1�}. 
 
Proposition 3.9: Let � be any set in a ��� ��, �ℛ�	��. Then the following 
properties hold: 
 
(i) ����-������ = � iff � is a ����-1�. 
 
(ii)  ����-����� = � iff � is a ����-��. 
 
(iii) ����-������ is the largest ����-1� contained in �. 
 
(iv) ����-����� is the smallest ����-�� containing �. 
 
Proof: (i), (ii), (iii) and (iv) are obvious. 
 
Proposition 3.10: Let � be any set in a ��� ��, �ℛ�	��. Then the following 
properties hold: 
  
(i) ����-����� − �� = � − �����-������, 
 
(ii)  ����-���� − �� = � − �����-�������. 
 
Proof: 
 
(i) By definition, Ng�g-����� = ⋂{<: � ⊆ <, < is a Ng�g-CS} 
 
 � − �Ng�g-������ = � − ⋂{<: � ⊆ <, < is a Ng�g-CS} 
                                  = ⋃{� − <: � ⊆ <, < is a Ng�g-CS} 
                                  = ⋃{ℳ: � − � ⊇ ℳ, ℳ is a Ng�g-OS} 
                                  = Ng�g-����� − ��. 
 
(ii) The proof is similar to (i). 
 
Theorem 3.11: Let ��, �ℛ�	�� be a ���. If � is a �-1�, then it is a ����-1� in 
��, �ℛ�	��. 
 
Proof: Let � be a N-OS in a ��� ��, �ℛ�	��, then � − � is a N-CS in ��, �ℛ�	��. 
By theorem (3.3) part (i); � − � is a Ng�g-CS. Hence, � is a Ng�g-OS in 
��, �ℛ�	��. 
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Theorem 3.12: Let ��, �ℛ�	�� be a ���. If � is a ����-1�, then it is a ��-1� 
in ��, �ℛ�	��. 
 
Proof: Let � be a Ng�g-OS in a ��� ��, �ℛ�	��, then � − � is a Ng�g-CS in 
��, �ℛ�	��. By theorem (3.3) part (ii); � − � is a Ng-CS. Hence, � is a Ng-OS in 
��, �ℛ�	��. 
 
Lemma 3.13: Let ��, �ℛ�	�� be a ���. If � is a ����-1�, then it is a ���-1� 
(resp. ���-1�) in ��, �ℛ�	��. 
 
Proof: Similar to above theorem. 
 
Proposition 3.14: If � and < are ����-�� in a ��� ��, �ℛ�	��, then �⋃< is a 
����-��. 
 
Proof: Let � and < be Ng�g-CS in a ��� ��, �ℛ�	�� and let ℳ be any N�g-OS 
containing � and <. Then �⋃< ⊆ ℳ. Then � ⊆ ℳ and < ⊆ ℳ. Since � and < 
are Ng�g-CS, N����� ⊆ ℳ and N���<� ⊆ ℳ. 
 
Now, N����⋃<� = N�����⋃N���<� ⊆ ℳ and so N����⋃<� ⊆ ℳ.  
 
Hence, �⋃< is a Ng�g-CS. 
 
Proposition 3.15: If � and < are ����-1� in a ��� ��, �ℛ�	��, then �⋂< is a 
����-1�. 
 
Proof: Let � and < be Ng�g-OS in a ��� ��, �ℛ�	��. Then � − � and � − < are 
Ng�g-CS. By proposition (3.14); �� − ��⋃�� − <� is a Ng�g-CS. Since 
�� − ��⋃�� − <� = � − ��⋂<�. Hence, �⋂< is a Ng�g-OS. 
 
Proposition 3.16: If a set � is ����-�� in a ��� ��, �ℛ�	��, then ������ − � 
contains no non-empty �-�� in ��, �ℛ�	��. 
 
Proof: Let � be a Ng�g-CS in a ��� ��, �ℛ�	�� and let ℱ be any N-CS in 
��, �ℛ�	�� such that ℱ ⊆ N����� − �. Since � is a Ng�g-CS, we have N����� ⊆
� − ℱ. This implies ℱ ⊆ � − N�����. Then ℱ ⊆ N�����⋂�� − N������ = .. 
Thus, ℱ = .. Hence, N����� − � contains no non-empty N-CS in ��, �ℛ�	��. 
 
Proposition 3.17: A set � is ����-�� in a ��� ��, �ℛ�	�� iff ������ − � 
contains no non-empty ���-�� in ��, �ℛ�	��. 
 
Proof: Let � be a Ng�g-CS in a ��� ��, �ℛ�	�� and let E be any N�g-CS in 
��, �ℛ�	�� such that E ⊆ N����� − �. Since � is a Ng�g-CS, we have N����� ⊆
� − E. This implies E ⊆ � − N�����. Then E ⊆ N�����⋂�� − N������ = .. 
Thus, E is empty. 
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Conversely, suppose that N����� − � contains no non-empty N�g-CS in 
��, �ℛ�	��. Let � ⊆ ℳ and ℳ is N�g-OS. If N����� ⊆ ℳ then N�����⋂�� −
ℳ� is non-empty. Since N����� is N-CS and � − ℳ is N�g-CS, we have 
N�����⋂�� − ℳ� is non-empty N�g-CS of N����� − � which is a contradiction. 
Therefore N����� ⊈ ℳ. Hence, � is a Ng�g-CS. 
 
Theorem 3.18: If � is a ���-1� and a ����-�� in a ��� ��, �ℛ�	��, then � is 
a �-�� in ��, �ℛ�	��. 
 
Proof: Suppose that � is a N�g-OS and a Ng�g-CS in a ��� ��, �ℛ�	��, then 
N����� ⊆ � and since � ⊆ N�����. Thus, N����� = �. Hence, � is a N-CS. 
 
Theorem 3.19: If � is a ����-�� in a ��� ��, �ℛ�	�� and � ⊆ < ⊆ ������, 
then < is a ����-�� in ��, �ℛ�	��. 
 
Proof: Suppose that � is a Ng�g-CS in a ��� ��, �ℛ�	��. Let ℳ be a N�g-OS in 
��, �ℛ�	�� such that < ⊆ ℳ. Then � ⊆ ℳ. Since � is a Ng�g-CS, it follows that 
N����� ⊆ ℳ. Now, < ⊆ N����� implies N���<� ⊆ N���N������ = N�����. 
Thus, N���<� ⊆ ℳ. Hence, < is a Ng�g-CS. 
 
Theorem 3.20: If � is a ����-1� in a ��� ��, �ℛ�	�� and ������� ⊆ < ⊆ �, 
then < is a ����-1� in ��, �ℛ�	��. 
 
Proof: Suppose that � is a Ng�g-OS in a ��� ��, �ℛ�	�� and N������ ⊆ < ⊆ �. 
Then � − � is a Ng�g-CS and � − � ⊆ � − < ⊆ N���� − ��. Then � − < is a 
Ng�g-CS by theorem (3.19). Hence, < is a Ng�g-OS. 
 
Theorem 3.21: A set � is ����-1� iff G ⊆ ������� where G is a ����-�� and 
G ⊆ �. 
 
Proof: Suppose that G ⊆ N������ where G is a Ng�g-CS and G ⊆ �. Then 
� − � ⊆ � − G and � − G is a N�g-OS by lemma (3.13). Now, N���� − �� =
� − N������ ⊆ � − G. Then � − � is a Ng�g-CS. Hence, � is a Ng�g-OS. 
 
Conversely, let � be a Ng�g-OS and G be a Ng�g-CS and G ⊆ �. Then � − � ⊆
� − G. Since � − � is a Ng�g-CS and � − G is a N�g-OS, we have N���� −
�� ⊆ � − G. Then G ⊆ N������. 
 
Remark 3.22: The following diagram shows the relation between the different 
types of �-��: 
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4 Nano Generalized :;-Continuous Maps 
 
In this section we present the nano generalized :;-continuous maps and study 
some of their crucial properties. 
 
Definition 4.1: A map ℎ: ��, �ℛ�	�� ⟶ ��, �ℛ���� is said to be a nano 
generalized ��-continuous (in short ����-continuous) if ℎ78�9� is a ����-�� 
in ��, �ℛ�	�� for every �-�� 9 in ��, �ℛ����. 
 
Theorem 4.2: Let ��, �ℛ�	�� and ��, �ℛ���� be ���, and ℎ: ��, �ℛ�	�� ⟶
��, �ℛ���� be a map. Then ℎ is a ����-continuous map iff ℎ78�9� is a ����-
1� in ��, �ℛ�	��, for every �-1� 9 in ��, �ℛ����. 
 
Proof: Let 9 be a N-OS in ��, �ℛ����. Then 9  is a N-CS in ��, �ℛ����, so 
 ℎ78�9 � = �ℎ78�9��  is a Ng�g-CS in ��, �ℛ�	��. Thus, ℎ78�9� is a Ng�g-OS 
in ��, �ℛ�	��. The proof of the opposite is obvious.. 
 
Proposition 4.3: Every ����-continuous map is a ���-continuous. 
 
Proof: Let ℎ: ��, �ℛ�	�� ⟶ ��, �ℛ���� be a Ng�g-continuous map and let 9 be 
a N-CS in ��, �ℛ����. Since ℎ is a Ng�g-continuous, ℎ78�9� is a Ng�g-CS in 
��, �ℛ�	��. By theorem (3.3) part (iii); ℎ78�9� is a N�g-CS in ��, �ℛ�	��. Thus, 
ℎ is a N�g-continuous. 
 
Proposition 4.4: Every ����-continuous map is a ���-continuous. 
 
Proof: Let ℎ: ��, �ℛ�	�� ⟶ ��, �ℛ���� be a Ng�g-continuous map and let 9 be 
a N-CS in ��, �ℛ����. Since ℎ is a Ng�g-continuous, ℎ78�9� is a Ng�g-CS in 
��, �ℛ�	��. By theorem (3.3) part (iv); ℎ78�9� is a Ng�-CS in ��, �ℛ�	��. Thus, 
ℎ is a Ng�-continuous. 
 
The contrary of the above propositions need not be true as appeared in the 
following example. 

N-CS Ng�g-CS 

N�g-CS 

Ng-CS 

Ng�-CS 

N�g-OS 

N�-CS 

+ 

Diagram (3.1) 
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Example 4.5: Let � = {>, ?, @, �} with �/ℛ = {{>}, {?}, {?, �}} and 	 = {>, ?}. 
Let �ℛ�	� = {., {>}, {?, �}, {>, ?, �}, �} be a ���. Let � = {�, A, B, C} with 
�/ℛ = {{A}, {C}, {�, B}} and � = {�, A}. Let �ℛ��� = {., {A}, {�, B}, {�, A, B}, �} 
be a ���. Define a map ℎ: ��, �ℛ�	�� ⟶ ��, �ℛ���� as ℎ�>� = B, ℎ�?� =
�, ℎ�@� = C, ℎ��� = A. Then ℎ is a ���-continuous and hence ���-continuous 
but not ����-continuous. 
 
Theorem 4.6: If ℎ: ��, �ℛ�	�� ⟶ ��, �ℛ���� is a ����-continuous map then 
for each point � of � and < ∈ �ℛ��� such that ℎ��� ∈ <, there exists a ����-
1� � of ��, �ℛ�	�� such that � ∈ � and ℎ��� ⊆ <. 
 
Proof: Let � be a point of � and < ∈ �ℛ��� such that ℎ��� ∈ <. Take � =
ℎ78�<�. Since � − < is a N-CS in ��, �ℛ���� and ℎ is a Ng�g-continuous map, 
we have ℎ78�� − <� = � − ℎ78�<� is a Ng�g-CS in ��, �ℛ�	��. This gives 
� = ℎ78�<� is a Ng�g-OS in ��, �ℛ�	�� and � ∈ � and ℎ��� = ℎ�ℎ78�<�� ⊆ <. 
 
Definition 4.7: A map ℎ: ��, �ℛ�	�� ⟶ ��, �ℛ���� is said to be a nano 
generalized ��-irresolute (in short ����-irresolute) if ℎ78�9� is a ����-�� in 
��, �ℛ�	�� for every ����-�� 9 in ��, �ℛ����. 
 
Theorem 4.8: Let ��, �ℛ�	�� and ��, �ℛ���� be ���, and ℎ: ��, �ℛ�	�� ⟶
��, �ℛ���� be a map. Then ℎ is a ����-irresolute map iff ℎ78�9� is a ����-
1� in ��, �ℛ�	��, for every ����-1� 9 in ��, �ℛ����. 
 
Proof: Let 9 be a Ng�g-OS in ��, �ℛ����. Then � − 9 is a Ng�g-CS in 
��, �ℛ����, so  ℎ78�� − 9� = � − ℎ78�9� is a Ng�g-CS in ��, �ℛ�	��. Thus, 
ℎ78�9� is a Ng�g-OS in ��, �ℛ�	��. The proof of the opposite is obvious..  
 
Proposition 4.9: Every ����-irresolute map is a ����-continuous. 
 
Proof: Let ℎ: ��, �ℛ�	�� ⟶ ��, �ℛ����  be a Ng�g-irresolute map and let 9 be 
a N-CS in ��, �ℛ����, by theorem (3.3) part (i), then 9 is a Ng�g-CS in 
��, �ℛ����. Since ℎ is a Ng�g-irresolute, then ℎ78�9� is a Ng�g-CS in 
��, �ℛ�	��. Thus, ℎ is a Ng�g-continuous. 
  
Definition 4.10: A ��� ��, �ℛ�	�� is said to be a nano HI

J
-space (in short �HI

J
-

space) if every ��-�� in it is a �-��. 
  
Definition 4.11: A ��� ��, �ℛ�	�� is said to be a nano HKLK-space (in short 
�HKLK-space) if every ����-�� in it is a �-��. 
  
Proposition 4.12: Every �HI

J
-space is a �HKLK-space. 
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Proof: Let ��, �ℛ�	�� be a NHI
J
-space and let � be a Ng�g-CS in �. Then � is a 

Ng-CS, by theorem (3.3) part (ii). Since ��, �ℛ�	�� is a NHI
J
-space, then � is a N-

CS in �. Hence, ��, �ℛ�	�� is a NHMLM-space. 
 
The following example demonstrates that the contrary of the above proposition 
not be true. 
 
Example 4.13: Let � = {>, ?, @} with �/ℛ = {{>}, {?, @}} and 	 = {>, @}.  
Let �ℛ�	� = {., {>}, {?, @}, �} be a ���. Then ��, �ℛ�	�� is a �HKLK-space, but 
not �HI

J
-space. 

 
Theorem 4.14: If ℎ8: ��, �ℛ�	�� ⟶ ��, �ℛ���� is a ����-continuous map and 
ℎN: ��, �ℛ���� ⟶ ��, �ℛ���� is a ��-continuous map and ��, �ℛ���� is a �HI

J
-

space. Then ℎN ∘ ℎ8: ��, �ℛ�	�� ⟶ ��, �ℛ���� is a ����-continuous map. 
 
Proof: Let 9 be a N-CS in �. Since ℎN is a Ng-continuous map and 
��, �ℛ���� is a NHI

J
-space, ℎN

78�9� is a N-CS in �. Since ℎ8 is a Ng�g-

continuous map, ℎ8
78�ℎN

78�9�� is a Ng�g-CS in �. Thus, ℎN ∘ ℎ8 is a Ng�g-
continuous. 
 
Theorem 4.15: Let ��, �ℛ�	�� and ��, �ℛ���� be ���, and ℎ: ��, �ℛ�	�� ⟶
��, �ℛ���� be a map: 
 
(i) If ��, �ℛ�	�� is a �HI

J
-space then ℎ is a ��-continuous iff it is a ����-

continuous. 
(ii)  If ��, �ℛ�	�� is a �HKLK-space then ℎ is a �-continuous iff it is a ����-

continuous. 
 
Proof: 
 
(i) Let 9 be any N-CS in ��, �ℛ����. Since ℎ is a Ng-continuous, ℎ78�9� is a 
Ng-CS in ��, �ℛ�	��. By ��, �ℛ�	�� is a NHI

J
-space, which implies, ℎ78�9� is a 

N-CS. By theorem (3.3) part (i); ℎ78�9� is a Ng�g-CS in ��, �ℛ�	��. Hence, ℎ is 
a Ng�g-continuous. 
 
Conversely, suppose that ℎ is a Ng�g-continuous. Let 9 be any N-CS in 
��, �ℛ����. Then ℎ78�9� is a Ng�g-CS in ��, �ℛ�	��. By theorem (3.3) part (ii); 
ℎ78�9� is a Ng-CS in ��, �ℛ�	��. Hence, ℎ is a Ng-continuous. 
 
(ii) Let 9 be any N-CS in ��, �ℛ����. Since ℎ is a N-continuous, ℎ78�9� is a N-
CS in ��, �ℛ�	��. By theorem (3.3) part (i); ℎ78�9� is a Ng�g-CS in ��, �ℛ�	��. 
Hence, ℎ is a Ng�g-continuous. 
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Conversely, suppose that ℎ is a Ng�g-continuous. Let 9 be any N-CS in 
��, �ℛ����. Then ℎ78�9� is a Ng�g-CS in ��, �ℛ�	��. By ��, �ℛ�	�� is a 
NHMLM-space, which implies ℎ78�9� is a N-CS in ��, �ℛ�	��. Hence, ℎ is a N-
continuous. 
 
Remark 4.16: The following diagram shows the relation between the different 
types of �-continuous maps: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

5 Conclusion  
 
The class of Ng�g-CS characterized utilizing N�g-CS forms a nano topology and 
lies between the class of N-CS and the class of Ng-CS. We likewise present Ng�g-
continuous maps by utilizing Ng�g-CS. The Ng�g-CS can be utilized to determine 
another nano separation axiom. 
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