

Gen. Math. Notes, Vol. 34, No. 2, June 2016, pp. 39-51 ISSN 2219-7184; Copyright © ICSRS Publication, 2016 www.i-csrs.org Available free online at http://www.geman.in

On Nano Generalized Alpha Generalized Closed Sets in Nano Topological Spaces

Qays Hatem Imran¹, Murtadha M. Abdulkadhim² and Mustafa H. Hadi³

^{1,2}Department of Mathematics, College of Education for Pure Science Al-Muthanna University, Samawah, Iraq
¹E-mail: qays.imran@mu.edu.iq
²E-mail: murtadha_moh@mu.edu.iq
³Department of Mathematics, College of Education for Pure Science Babylon University, Hilla, Iraq E-mail: mustafahh1984@yahoo.com

(Received: 10-3-16 / Accepted: 2-6-16)

Abstract

In this paper we present another class of N-CS called Ng α g-CS and study their fundamental properties in nano topological spaces. We also present Ng α gcontinuous maps with some of its properties.

Keywords: *Ngag-CS*, *Ngag-continuous maps*, *Ngag-irresolute maps*.

1 Introduction

M.L. Thivagar and C. Richard [4] presented nano topological space (or simply nts) as for a subset G of a universe which is characterized regarding lower and upper approximations of G. He has additionally characterized nano closed sets (in short N-CS), nano interior and nano closure of a set. In 2014, Ng-CS was presented by K. Bhuvaneswari and K.M. Gnanapriya [1]. R.T. Nachiyar and K. Bhuvaneswari [6] presented the idea of N α g-CS and Ng α -CS in *nts*. The purpose

of this paper is to present the concept of Ng α g-CS and study their essential properties in *nts*. We likewise present Ng α g-continuous maps by utilizing Ng α g-CS and concentrate some of their principal properties.

2 Preliminaries

Throughout this paper, $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$ and $(\mathcal{W}, \rho_{\mathcal{R}}(I))$ (or simply \mathcal{U}, \mathcal{V} and \mathcal{W}) always mean *nts* on which no separation axioms are expected unless generally specified. For a set \mathcal{C} in a *nts* $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, $Ncl(\mathcal{C})$, $Nint(\mathcal{C})$ and $\mathcal{C}^{c} = \mathcal{U} - \mathcal{C}$ denote the nano closure of \mathcal{C} , the nano interior of \mathcal{C} and the nano complement of \mathcal{C} respectively.

Definition 2.1 [8]: Let \mathcal{U} be a non-empty finite set of objects called the universe and \mathcal{R} be an equivalence relation on \mathcal{U} named as the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair $(\mathcal{U}, \mathcal{R})$ is said to be the approximation space.

Remark 2.2 [8]: Let $(\mathcal{U}, \mathcal{R})$ be an approximation space and $G \subseteq \mathcal{U}$. Then:

- (i) The lower approximation of G with respect to \mathcal{R} is the set of all objects, which can be for certain classified as G with respect to \mathcal{R} and it is denoted by $L_{\mathcal{R}}(G)$. That is, $L_{\mathcal{R}}(G) = \bigcup \{\mathcal{R}(a) : \mathcal{R}(a) \subseteq G, a \in U\}$, where $\mathcal{R}(a)$ denotes the equivalence class determined by a.
- (ii) The upper approximation of G with respect to \mathcal{R} is the set of all objects, which can be possibly classified as G with respect to \mathcal{R} and it is denoted by $U_{\mathcal{R}}(G)$. That is, $U_{\mathcal{R}}(G) = \bigcup \{\mathcal{R}(a): \mathcal{R}(a) \cap G \neq \phi, a \in U\}$.
- (iii) The boundary region of G with respect to \mathcal{R} is the set of all objects, which can be classified neither as G nor as not G with respect to \mathcal{R} and it is denoted by $B_{\mathcal{R}}(G)$. That is, $B_{\mathcal{R}}(G) = U_{\mathcal{R}}(G) L_{\mathcal{R}}(G)$.

Proposition 2.3 [3]: *If* $(\mathcal{U}, \mathcal{R})$ *is an approximation space and* $G, H \subseteq \mathcal{U}$ *. Then:*

(i)
$$L_{\mathcal{R}}(G) \subseteq G \subseteq U_{\mathcal{R}}(G)$$
.

(*ii*)
$$L_{\mathcal{R}}(\phi) = U_{\mathcal{R}}(\phi) = \phi$$
 and $L_{\mathcal{R}}(\mathcal{U}) = U_{\mathcal{R}}(\mathcal{U}) = \mathcal{U}$.

(*iii*) $U_{\mathcal{R}}(G \cup H) = U_{\mathcal{R}}(G) \cup U_{\mathcal{R}}(H).$

(*iv*) $U_{\mathcal{R}}(G \cap H) \subseteq U_{\mathcal{R}}(G) \cap U_{\mathcal{R}}(H)$.

 $(v) L_{\mathcal{R}}(G \cup H) \supseteq L_{\mathcal{R}}(G) \cup L_{\mathcal{R}}(H).$

 $(vi) L_{\mathcal{R}}(G \cap H) = L_{\mathcal{R}}(G) \cap L_{\mathcal{R}}(H).$

(vii) $L_{\mathcal{R}}(G) \subseteq L_{\mathcal{R}}(H)$ and $U_{\mathcal{R}}(G) \subseteq U_{\mathcal{R}}(H)$ whenever $G \subseteq H$.

(viii) $U_{\mathcal{R}}(G^c) = (L_{\mathcal{R}}(G))^c$ and $L_{\mathcal{R}}(G^c) = (U_{\mathcal{R}}(G))^c$.

 $(ix) U_{\mathcal{R}}U_{\mathcal{R}}(G) = L_{\mathcal{R}}U_{\mathcal{R}}(G) = U_{\mathcal{R}}(G).$

 $(x) L_{\mathcal{R}}L_{\mathcal{R}}(G) = U_{\mathcal{R}}L_{\mathcal{R}}(G) = L_{\mathcal{R}}(G).$

Definition 2.4 [4]: Let \mathcal{U} be the universe, \mathcal{R} be an equivalence relation on \mathcal{U} and $\tau_{\mathcal{R}}(G) = \{\phi, \mathcal{U}, L_{\mathcal{R}}(G), U_{\mathcal{R}}(G), B_{\mathcal{R}}(G)\}$ where $G \subseteq \mathcal{U}$. Then by proposition (2.3), $\tau_{\mathcal{R}}(G)$ satisfies the following axioms:

- (*i*) $\phi, \mathcal{U} \in \tau_{\mathcal{R}}(G)$.
- (ii) The union of the elements of any subcollection of $\tau_{\mathcal{R}}(G)$ is in $\tau_{\mathcal{R}}(G)$.
- (iii) The intersection of the elements of any finite sub collection of $\tau_{\mathcal{R}}(G)$ is in $\tau_{\mathcal{R}}(G)$.

That is, $\tau_{\mathcal{R}}(G)$ is a topology on \mathcal{U} called the nano topology on \mathcal{U} with respect to G and the pair $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ is called a nano topological space (or simply nts). The elements of $\tau_{\mathcal{R}}(G)$ are called nano open sets (in short N-OS).

Remark 2.5 [4]: Let $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ be a nts with respect to G where $G \subseteq \mathcal{U}$ and \mathcal{R} be an equivalence relation on \mathcal{U} . Then \mathcal{U}/\mathcal{R} denotes the family of equivalence classes of \mathcal{U} by \mathcal{R} .

Definition 2.6 [4]: A subset C of ants $(U, \tau_{\mathcal{R}}(G))$ is said to be a nano α -open set (in short N α -OS) if $C \subseteq Nint(Ncl(Nint(C)))$ and a nano α -closed set (in short N α -CS) if $Ncl(Nint(Ncl(C))) \subseteq C$. The nano α -closure of a set C of a nts $(U, \tau_{\mathcal{R}}(G))$ is the intersection of all N α -CS that contain C and is denoted by N α cl(C).

Definition 2.7 [1]: A subset C of a nts $(U, \tau_{\mathcal{R}}(G))$ is said to be a nano generalized closed set (in short Ng-CS) if $Ncl(C) \subseteq \mathcal{M}$ whenever $C \subseteq \mathcal{M}$ and \mathcal{M} is a N-OS in $(U, \tau_{\mathcal{R}}(G))$. The complement of a Ng-CS is a Ng-OS in $(U, \tau_{\mathcal{R}}(G))$.

Definition 2.8 [6]: A subset C of a nts $(U, \tau_{\mathcal{R}}(G))$ is said to be a nano αg -closed set (in short N αg -CS) if N $\alpha cl(C) \subseteq \mathcal{M}$ whenever $C \subseteq \mathcal{M}$ and \mathcal{M} is a N-OS in $(U, \tau_{\mathcal{R}}(G))$. The complement of a N αg -CS is a N αg -OS in $(U, \tau_{\mathcal{R}}(G))$.

Definition 2.9 [6]: A subset C of a nts $(U, \tau_{\mathcal{R}}(G))$ is said to be a nano $g\alpha$ -closed set (in short $Ng\alpha$ -CS) if $N\alpha cl(C) \subseteq \mathcal{M}$ whenever $C \subseteq \mathcal{M}$ and \mathcal{M} is a $N\alpha$ -OS in $(U, \tau_{\mathcal{R}}(G))$. The complement of a $Ng\alpha$ -CS is a $Ng\alpha$ -OS in $(U, \tau_{\mathcal{R}}(G))$.

Theorem 2.10 [4, 6]: In a nts $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, then the following statements hold and the contrary of each statement is not true:

(i) Every N-OS (resp. N-CS) is a N α -OS (resp. N α -CS).

- (ii) Every N-OS (resp. N-CS) is a Ng-OS (resp. Ng-CS).
- (iii) Every Ng-OS (resp. Ng-CS) is a Nag-OS (resp. Nag-CS).
- (iv) Every $N\alpha$ -OS (resp. $N\alpha$ -CS) is a $Ng\alpha$ -OS (resp. $Ng\alpha$ -CS).
- (v) Every $Ng\alpha$ -OS (resp. $Ng\alpha$ -CS) is a $N\alpha g$ -OS (resp. $N\alpha g$ -CS).

Definition 2.11: Let $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$ be nts. Then the map $h: (\mathcal{U}, \tau_{\mathcal{R}}(G)) \to (\mathcal{V}, \sigma_{\mathcal{R}}(H))$ is called:

- (i) nano continuous (in short N-continuous) [5] if $h^{-1}(\mathcal{K})$ is a N-OS (resp. N-CS) in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, for each N-OS (resp. N-CS) \mathcal{K} in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$.
- (ii) nano α -continuous (in short N α -continuous) [7] if $h^{-1}(\mathcal{K})$ is a N α -OS (resp. N α -CS) in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, for each N-OS (resp. N-CS) \mathcal{K} in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$.
- (iii) nano g-continuous (in short Ng-continuous) [2] if $h^{-1}(\mathcal{K})$ is a Ng-OS (resp. Ng-CS) in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, for each N-OS (resp. N-CS) \mathcal{K} in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$.
- (iv) nano αg -continuous (in short $N\alpha g$ -continuous) [7] if $h^{-1}(\mathcal{K})$ is a $N\alpha g$ -OS (resp. $N\alpha g$ -CS) in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, for each N-OS (resp. N-CS) \mathcal{K} in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$.
- (v) nano $g\alpha$ -continuous (in short $Ng\alpha$ -continuous) [7] if $h^{-1}(\mathcal{K})$ is a $Ng\alpha$ -OS (resp. $Ng\alpha$ -CS) in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, for each N-OS (resp. N-CS) \mathcal{K} in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$.

Theorem 2.12 [2, 7]: Let $h: (\mathcal{U}, \tau_{\mathcal{R}}(G)) \to (\mathcal{V}, \sigma_{\mathcal{R}}(H))$ be a map. Then the following statements hold and the contrary of each statement is not true:

- (i) Every N-continuous map is a $N\alpha$ -continuous.
- *(ii)* Every N-continuous map is a Ng-continuous.
- (iii) Every Ng-continuous map is a $N\alpha g$ -continuous.
- (iv) Every $N\alpha$ -continuous map is a $Ng\alpha$ -continuous.
- (v) Every $Ng\alpha$ -continuous map is a $N\alpha g$ -continuous.

3 Nano Generalized αg-Closed Sets

In this section we present and study the nano generalized αg -closed sets and some of its properties.

Definition 3.1: A subset C of a nts $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ is said to be a nano generalized αg -closed set (in short Ng αg -CS) if Ncl(C) $\subseteq \mathcal{M}$ whenever $C \subseteq \mathcal{M}$ and \mathcal{M} is a N αg -OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. The family of all Ng αg -CS of a nts $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ is denoted by Ng αg -C (\mathcal{U}, G) .

Definition 3.2: The intersection of all $Ng\alpha g$ -CS in a nts $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ containing \mathcal{C} is called nano $g\alpha g$ -closure of \mathcal{C} and is denoted by $Ng\alpha g$ - $cl(\mathcal{C})$, $Ng\alpha g$ - $cl(\mathcal{C}) = \bigcap \{\mathcal{D}: \mathcal{C} \subseteq \mathcal{D}, \mathcal{D} \text{ is a } Ng\alpha g$ - $CS \}$.

Theorem 3.3: In a nts $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, the following statements are true:

(i) Every N-CS is a $Ng\alpha g$ -CS.

(ii) Every $Ng\alpha g$ -CS is a Ng-CS.

(iii) Every $Ng\alpha g$ -CS is a $N\alpha g$ -CS.

(iv) Every $Ng\alpha g$ -CS is a $Ng\alpha$ -CS.

Proof:

(i)Let \mathcal{C} be a N-CS in a *nts* $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and let \mathcal{M} be any N α g-OS containing \mathcal{C} . Then Ncl $(\mathcal{C}) = \mathcal{C} \subseteq \mathcal{M}$. Hence, \mathcal{C} is a Ng α g-CS.

(ii) Let C be a Ng α g-CS in a *nts* $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and let \mathcal{M} be any N-OS containing C. By theorem (2.10); \mathcal{M} is a N α g-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Since C is a Ng α g-CS, we have Ncl $(C) \subseteq \mathcal{M}$. Hence, C is a Ng-CS.

(iii) Let C be a Ng α g-CS in a *nts* $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and let \mathcal{M} be any N-OS containing C. By theorem (2.10); \mathcal{M} is a N α g-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Since C is a Ng α g-CS, we have N $\alpha cl(C) \subseteq Ncl(C) \subseteq \mathcal{M}$. Hence, C is a N α g-CS.

(iv) Let C be a Ng α g-CS in a *nts* $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and let \mathcal{M} be any N α -OS containing C. By theorem (2.10); \mathcal{M} is a N α g-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Since C is a Ng α g-CS, we have N $\alpha cl(C) \subseteq Ncl(C) \subseteq \mathcal{M}$. Hence, C is a Ng α -CS.

The contrary of the above theorem need not be true as appeared in the following examples.

Example 3.4: Let $\mathcal{U} = \{p, q, r, s\}$ with $\mathcal{U}/\mathcal{R} = \{\{p\}, \{r\}, \{q, s\}\}$ and $G = \{p, q\}$. Let $\tau_{\mathcal{R}}(G) = \{\phi, \{p\}, \{q, s\}, \{p, q, s\}, \mathcal{U}\}$ be a nts. Then the set $\{p, q, r\}$ is a Ng α g-CS but not N-CS.

Example 3.5: Let $\mathcal{U} = \{p, q, r, s, t\}$ with $\mathcal{U}/\mathcal{R} = \{\{s\}, \{p, q\}, \{r, t\}\}$ and $G = \{p, s\}$. Let $\tau_{\mathcal{R}}(G) = \{\phi, \{s\}, \{p, q\}, \{p, q, s\}, \mathcal{U}\}$ be a nts. Then the set $\{p, r, s\}$ is a Ng-CS but not Ng α g-CS.

Example 3.6: Let $\mathcal{U} = \{t, u, v, w\}$ with $\mathcal{U}/\mathcal{R} = \{\{t\}, \{v\}, \{u, w\}\}$ and $G = \{t, u\}$. Let $\tau_{\mathcal{R}}(G) = \{\phi, \{t\}, \{u, w\}, \{t, u, w\}, \mathcal{U}\}$ be a nts. Then the set $\{t, v\}$ is a Ng α -CS and hence N α g-CS but not Ng α g-CS. **Definition 3.7:** A subset C of a nts $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ is said to be a nano generalized αg -open set (in short Ng αg -OS) iff $\mathcal{U} - \mathcal{C}$ is a Ng αg -CS. The family of all Ng αg -OS of a nts $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ is denoted by Ng αg -O (\mathcal{U}, G) .

Definition 3.8: The union of all $Ng\alpha g$ -OS in a nts $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ contained in \mathcal{C} is called nano $g\alpha g$ -interior of \mathcal{C} and is denoted by $Ng\alpha g$ -int (\mathcal{C}) , $Ng\alpha g$ -int $(\mathcal{C}) = \bigcup \{\mathcal{D}: \mathcal{C} \supseteq \mathcal{D}, \mathcal{D} \text{ is a } Ng\alpha g$ -OS}.

Proposition 3.9: Let C be any set in a nts $(U, \tau_{\mathcal{R}}(G))$. Then the following properties hold:

(i) $Ng\alpha g$ -int(C) = C iff C is a $Ng\alpha g$ -OS.

(ii) $Ng\alpha g$ -cl(C) = C iff C is a $Ng\alpha g$ -CS.

(iii) $Ng\alpha g$ -int(C) is the largest $Ng\alpha g$ -OS contained in C.

(iv) $Ng\alpha g$ -cl(C) is the smallest $Ng\alpha g$ -CS containing C.

Proof: (i), (ii), (iii) and (iv) are obvious.

Proposition 3.10: Let C be any set in a nts $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Then the following properties hold:

(i) $Ng\alpha g$ -int $(\mathcal{U} - \mathcal{C}) = \mathcal{U} - (Ng\alpha g$ -cl $(\mathcal{C})),$

(*ii*) $Ng\alpha g$ - $cl(\mathcal{U} - \mathcal{C}) = \mathcal{U} - (Ng\alpha g$ - $int(\mathcal{C})).$

Proof:

(i) By definition, $\operatorname{Ng}\alpha g\text{-}cl(\mathcal{C}) = \bigcap \{\mathcal{D}: \mathcal{C} \subseteq \mathcal{D}, \mathcal{D} \text{ is a } \operatorname{Ng}\alpha g\text{-}CS \}$

 $\begin{aligned} \mathcal{U} - (\mathrm{Ng}\alpha \mathrm{g-}cl(\mathcal{C})) &= \mathcal{U} - \bigcap \{\mathcal{D}: \mathcal{C} \subseteq \mathcal{D}, \mathcal{D} \text{ is a Ng}\alpha \mathrm{g-}\mathrm{CS} \} \\ &= \bigcup \{\mathcal{U} - \mathcal{D}: \mathcal{C} \subseteq \mathcal{D}, \mathcal{D} \text{ is a Ng}\alpha \mathrm{g-}\mathrm{CS} \} \\ &= \bigcup \{\mathcal{M}: \mathcal{U} - \mathcal{C} \supseteq \mathcal{M}, \mathcal{M} \text{ is a Ng}\alpha \mathrm{g-}\mathrm{OS} \} \\ &= \mathrm{Ng}\alpha \mathrm{g-}int(\mathcal{U} - \mathcal{C}). \end{aligned}$

(ii) The proof is similar to (i).

Theorem 3.11: Let $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ be a nts. If \mathcal{C} is a N-OS, then it is a Ng α g-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$.

Proof: Let C be a N-OS in a *nts* $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, then $\mathcal{U} - C$ is a N-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. By theorem (3.3) part (i); $\mathcal{U} - C$ is a Ng α g-CS. Hence, C is a Ng α g-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. **Theorem 3.12:** Let $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ be a nts. If C is a Ng α g-OS, then it is a Ng-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$.

Proof: Let C be a Ng α g-OS in a *nts* $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, then $\mathcal{U} - C$ is a Ng α g-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. By theorem (3.3) part (ii); $\mathcal{U} - C$ is a Ng-CS. Hence, C is a Ng-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$.

Lemma 3.13: Let $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ be a nts. If \mathcal{C} is a Ng α g-OS, then it is a N α g-OS (resp. Ng α -OS) in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$.

Proof: Similar to above theorem.

Proposition 3.14: If C and D are $Ng\alpha g$ -CS in a nts $(U, \tau_{\mathcal{R}}(G))$, then $C \cup D$ is a $Ng\alpha g$ -CS.

Proof: Let C and D be Ng α g-CS in a *nts* $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and let \mathcal{M} be any N α g-OS containing C and D. Then $C \cup D \subseteq \mathcal{M}$. Then $C \subseteq \mathcal{M}$ and $D \subseteq \mathcal{M}$. Since C and D are Ng α g-CS, Ncl $(C) \subseteq \mathcal{M}$ and Ncl $(D) \subseteq \mathcal{M}$.

Now, $Ncl(C\cup D) = Ncl(C) \cup Ncl(D) \subseteq M$ and so $Ncl(C\cup D) \subseteq M$.

Hence, CUD is a Ng α g-CS.

Proposition 3.15: If C and D are $Ng\alpha g$ -OS in a nts $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, then $C \cap D$ is a $Ng\alpha g$ -OS.

Proof: Let C and D be Ng α g-OS in a *nts* $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Then $\mathcal{U} - C$ and $\mathcal{U} - D$ are Ng α g-CS. By proposition (3.14); $(\mathcal{U} - C) \cup (\mathcal{U} - D)$ is a Ng α g-CS. Since $(\mathcal{U} - C) \cup (\mathcal{U} - D) = \mathcal{U} - (C \cap D)$. Hence, $C \cap D$ is a Ng α g-OS.

Proposition 3.16: If a set C is $Ng\alpha g$ -CS in a nts $(U, \tau_{\mathcal{R}}(G))$, then Ncl(C) - C contains no non-empty N-CS in $(U, \tau_{\mathcal{R}}(G))$.

Proof: Let C be a Ng α g-CS in a *nts* $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and let \mathcal{F} be any N-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ such that $\mathcal{F} \subseteq Ncl(\mathcal{C}) - \mathcal{C}$. Since C is a Ng α g-CS, we have $Ncl(\mathcal{C}) \subseteq \mathcal{U} - \mathcal{F}$. This implies $\mathcal{F} \subseteq \mathcal{U} - Ncl(\mathcal{C})$. Then $\mathcal{F} \subseteq Ncl(\mathcal{C}) \cap (\mathcal{U} - Ncl(\mathcal{C})) = \phi$. Thus, $\mathcal{F} = \phi$. Hence, $Ncl(\mathcal{C}) - \mathcal{C}$ contains no non-empty N-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$.

Proposition 3.17: A set C is $Ng\alpha g$ -CS in a nts $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ iff $Ncl(\mathcal{C}) - \mathcal{C}$ contains no non-empty $N\alpha g$ -CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$.

Proof: Let C be a Ng α g-CS in a *nts* $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and let S be any N α g-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ such that $S \subseteq Ncl(\mathcal{C}) - \mathcal{C}$. Since C is a Ng α g-CS, we have $Ncl(\mathcal{C}) \subseteq \mathcal{U} - S$. This implies $S \subseteq \mathcal{U} - Ncl(\mathcal{C})$. Then $S \subseteq Ncl(\mathcal{C}) \cap (\mathcal{U} - Ncl(\mathcal{C})) = \phi$. Thus, S is empty.

Conversely, suppose that $Ncl(\mathcal{C}) - \mathcal{C}$ contains no non-empty N α g-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Let $\mathcal{C} \subseteq \mathcal{M}$ and \mathcal{M} is N α g-OS. If $Ncl(\mathcal{C}) \subseteq \mathcal{M}$ then $Ncl(\mathcal{C}) \cap (\mathcal{U} - \mathcal{M})$ is non-empty. Since $Ncl(\mathcal{C})$ is N-CS and $\mathcal{U} - \mathcal{M}$ is N α g-CS, we have $Ncl(\mathcal{C}) \cap (\mathcal{U} - \mathcal{M})$ is non-empty N α g-CS of $Ncl(\mathcal{C}) - \mathcal{C}$ which is a contradiction. Therefore $Ncl(\mathcal{C}) \not\subseteq \mathcal{M}$. Hence, \mathcal{C} is a Ng α g-CS.

Theorem 3.18: If C is a N α g-OS and a Ng α g-CS in a nts (U, $\tau_{\mathcal{R}}(G)$), then C is a N-CS in (U, $\tau_{\mathcal{R}}(G)$).

Proof: Suppose that C is a N α g-OS and a Ng α g-CS in a *nts* $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, then N $cl(C) \subseteq C$ and since $C \subseteq Ncl(C)$. Thus, Ncl(C) = C. Hence, C is a N-CS.

Theorem 3.19: If C is a Ngag-CS in ants $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and $C \subseteq \mathcal{D} \subseteq Ncl(C)$, then \mathcal{D} is a Ngag-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$.

Proof: Suppose that C is a Ng α g-CS in a *nts* $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Let \mathcal{M} be a N α g-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ such that $\mathcal{D} \subseteq \mathcal{M}$. Then $C \subseteq \mathcal{M}$. Since C is a Ng α g-CS, it follows that $Ncl(\mathcal{C}) \subseteq \mathcal{M}$. Now, $\mathcal{D} \subseteq Ncl(\mathcal{C})$ implies $Ncl(\mathcal{D}) \subseteq Ncl(Ncl(\mathcal{C})) = Ncl(\mathcal{C})$. Thus, $Ncl(\mathcal{D}) \subseteq \mathcal{M}$. Hence, \mathcal{D} is a Ng α g-CS.

Theorem 3.20: If C is a Ng α g-OS in ants $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and Nint $(C) \subseteq \mathcal{D} \subseteq C$, then \mathcal{D} is a Ng α g-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$.

Proof: Suppose that C is a Ng α g-OS in a *nts* $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and Nint $(C) \subseteq \mathcal{D} \subseteq C$. Then $\mathcal{U} - C$ is a Ng α g-CS and $\mathcal{U} - C \subseteq \mathcal{U} - \mathcal{D} \subseteq Ncl(\mathcal{U} - C)$. Then $\mathcal{U} - \mathcal{D}$ is a Ng α g-CS by theorem (3.19). Hence, \mathcal{D} is a Ng α g-OS.

Theorem 3.21: A set C is $Ng\alpha g$ -OS iff $\mathcal{P} \subseteq Nint(C)$ where \mathcal{P} is a $Ng\alpha g$ -CS and $\mathcal{P} \subseteq C$.

Proof: Suppose that $\mathcal{P} \subseteq \operatorname{Nint}(\mathcal{C})$ where \mathcal{P} is a Ng α g-CS and $\mathcal{P} \subseteq \mathcal{C}$. Then $\mathcal{U} - \mathcal{C} \subseteq \mathcal{U} - \mathcal{P}$ and $\mathcal{U} - \mathcal{P}$ is a N α g-OS by lemma (3.13). Now, Ncl $(\mathcal{U} - \mathcal{C}) = \mathcal{U} - \operatorname{Nint}(\mathcal{C}) \subseteq \mathcal{U} - \mathcal{P}$. Then $\mathcal{U} - \mathcal{C}$ is a Ng α g-CS. Hence, \mathcal{C} is a Ng α g-OS.

Conversely, let \mathcal{C} be a Ng α g-OS and \mathcal{P} be a Ng α g-CS and $\mathcal{P} \subseteq \mathcal{C}$. Then $\mathcal{U} - \mathcal{C} \subseteq \mathcal{U} - \mathcal{P}$. Since $\mathcal{U} - \mathcal{C}$ is a Ng α g-CS and $\mathcal{U} - \mathcal{P}$ is a N α g-OS, we have Ncl($\mathcal{U} - \mathcal{C}$) $\subseteq \mathcal{U} - \mathcal{P}$. Then $\mathcal{P} \subseteq Nint(\mathcal{C})$.

Remark 3.22: The following diagram shows the relation between the different types of *N*-CS:

4 Nano Generalized *α*g-Continuous Maps

In this section we present the nano generalized αg -continuous maps and study some of their crucial properties.

Definition 4.1: A map $h: (\mathcal{U}, \tau_{\mathcal{R}}(G)) \to (\mathcal{V}, \sigma_{\mathcal{R}}(H))$ is said to be a nano generalized αg -continuous (in short Ng αg -continuous) if $h^{-1}(\mathcal{K})$ is a Ng αg -CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ for every N-CS \mathcal{K} in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$.

Theorem 4.2: Let $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$ be nts, and h: $(\mathcal{U}, \tau_{\mathcal{R}}(G)) \rightarrow (\mathcal{V}, \sigma_{\mathcal{R}}(H))$ be a map. Then h is a Ngag-continuous map iff $h^{-1}(\mathcal{K})$ is a Ngag-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, for every N-OS \mathcal{K} in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$.

Proof: Let \mathcal{K} be a N-OS in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$. Then \mathcal{K}^c is a N-CS in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$, so $h^{-1}(\mathcal{K}^c) = (h^{-1}(\mathcal{K}))^c$ is a Ng α g-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Thus, $h^{-1}(\mathcal{K})$ is a Ng α g-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. The proof of the opposite is obvious..

Proposition 4.3: Every $Ng\alpha g$ -continuous map is a $N\alpha g$ -continuous.

Proof: Let $h: (\mathcal{U}, \tau_{\mathcal{R}}(G)) \to (\mathcal{V}, \sigma_{\mathcal{R}}(H))$ be a Ng α g-continuous map and let \mathcal{K} be a N-CS in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$. Since h is a Ng α g-continuous, $h^{-1}(\mathcal{K})$ is a Ng α g-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. By theorem (3.3) part (iii); $h^{-1}(\mathcal{K})$ is a N α g-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Thus, h is a N α g-continuous.

Proposition 4.4: *Every* $Ng\alpha g$ *-continuous map is a* $Ng\alpha$ *-continuous.*

Proof: Let $h: (\mathcal{U}, \tau_{\mathcal{R}}(G)) \to (\mathcal{V}, \sigma_{\mathcal{R}}(H))$ be a Ng α g-continuous map and let \mathcal{K} be a N-CS in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$. Since h is a Ng α g-continuous, $h^{-1}(\mathcal{K})$ is a Ng α g-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. By theorem (3.3) part (iv); $h^{-1}(\mathcal{K})$ is a Ng α -CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Thus, h is a Ng α -continuous.

The contrary of the above propositions need not be true as appeared in the following example.

Example 4.5: Let $\mathcal{U} = \{p, q, r, s\}$ with $\mathcal{U}/\mathcal{R} = \{\{p\}, \{q\}, \{q, s\}\}$ and $G = \{p, q\}$. Let $\tau_{\mathcal{R}}(G) = \{\phi, \{p\}, \{q, s\}, \{p, q, s\}, \mathcal{U}\}$ be a nts. Let $\mathcal{V} = \{t, u, v, w\}$ with $\mathcal{V}/\mathcal{R} = \{\{u\}, \{w\}, \{t, v\}\}$ and $H = \{t, u\}$. Let $\sigma_{\mathcal{R}}(H) = \{\phi, \{u\}, \{t, v\}, \{t, u, v\}, \mathcal{V}\}$ be a nts. Define a map $h: (\mathcal{U}, \tau_{\mathcal{R}}(G)) \rightarrow (\mathcal{V}, \sigma_{\mathcal{R}}(H))$ as h(p) = v, h(q) = t, h(r) = w, h(s) = u. Then h is a Ng α -continuous and hence N α g-continuous but not Ng α g-continuous.

Theorem 4.6: If $h: (\mathcal{U}, \tau_{\mathcal{R}}(G)) \to (\mathcal{V}, \sigma_{\mathcal{R}}(H))$ is a Ng α g-continuous map then for each point c of \mathcal{U} and $\mathcal{D} \in \sigma_{\mathcal{R}}(H)$ such that $h(c) \in \mathcal{D}$, there exists a Ng α g-OS C of $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ such that $c \in C$ and $h(C) \subseteq \mathcal{D}$.

Proof: Let *c* be a point of \mathcal{U} and $\mathcal{D} \in \sigma_{\mathcal{R}}(H)$ such that $h(c) \in \mathcal{D}$. Take $\mathcal{C} = h^{-1}(\mathcal{D})$. Since $\mathcal{V} - \mathcal{D}$ is a N-CS in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$ and *h* is a Ng α g-continuous map, we have $h^{-1}(\mathcal{V} - \mathcal{D}) = \mathcal{U} - h^{-1}(\mathcal{D})$ is a Ng α g-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. This gives $\mathcal{C} = h^{-1}(\mathcal{D})$ is a Ng α g-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and $c \in \mathcal{C}$ and $h(\mathcal{C}) = h(h^{-1}(\mathcal{D})) \subseteq \mathcal{D}$.

Definition 4.7: A map $h: (\mathcal{U}, \tau_{\mathcal{R}}(G)) \to (\mathcal{V}, \sigma_{\mathcal{R}}(H))$ is said to be a nano generalized αg -irresolute (in short $Ng\alpha g$ -irresolute) if $h^{-1}(\mathcal{K})$ is a $Ng\alpha g$ -CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ for every $Ng\alpha g$ -CS \mathcal{K} in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$.

Theorem 4.8: Let $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$ be nts, and h: $(\mathcal{U}, \tau_{\mathcal{R}}(G)) \rightarrow (\mathcal{V}, \sigma_{\mathcal{R}}(H))$ be a map. Then h is a Ngag-irresolute map iff $h^{-1}(\mathcal{K})$ is a Ngag-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$, for every Ngag-OS \mathcal{K} in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$.

Proof: Let \mathcal{K} be a Ng α g-OS in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$. Then $\mathcal{V} - \mathcal{K}$ is a Ng α g-CS in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$, so $h^{-1}(\mathcal{V} - \mathcal{K}) = \mathcal{U} - h^{-1}(\mathcal{K})$ is a Ng α g-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Thus, $h^{-1}(\mathcal{K})$ is a Ng α g-OS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. The proof of the opposite is obvious.

Proposition 4.9: Every Ngag-irresolute map is a Ngag-continuous.

Proof: Let $h: (\mathcal{U}, \tau_{\mathcal{R}}(G)) \to (\mathcal{V}, \sigma_{\mathcal{R}}(H))$ be a Ng α g-irresolute map and let \mathcal{K} be a N-CS in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$, by theorem (3.3) part (i), then \mathcal{K} is a Ng α g-CS in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$. Since h is a Ng α g-irresolute, then $h^{-1}(\mathcal{K})$ is a Ng α g-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Thus, h is a Ng α g-continuous.

Definition 4.10: A nts $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ is said to be a nano $T_{\frac{1}{2}}$ -space (in short $NT_{\frac{1}{2}}$ -space) if every Ng-CS in it is a N-CS.

Definition 4.11: A nts $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ is said to be a nano $T_{g\alpha g}$ -space (in short $NT_{g\alpha g}$ -space) if every $Ng\alpha g$ -CS in it is a N-CS.

Proposition 4.12: Every $NT_{\frac{1}{2}}$ -space is a $NT_{g\alpha g}$ -space.

Proof: Let $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ be a $NT_{\frac{1}{2}}$ -space and let \mathcal{C} be a Ng α g-CS in \mathcal{U} . Then \mathcal{C} is a Ng-CS, by theorem (3.3) part (ii). Since $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ is a $NT_{\frac{1}{2}}$ -space, then \mathcal{C} is a N-CS in \mathcal{U} . Hence, $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ is a $NT_{g\alpha g}$ -space.

The following example demonstrates that the contrary of the above proposition not be true.

Example 4.13: Let $\mathcal{U} = \{p, q, r\}$ with $\mathcal{U}/\mathcal{R} = \{\{p\}, \{q, r\}\}$ and $G = \{p, r\}$. Let $\tau_{\mathcal{R}}(G) = \{\phi, \{p\}, \{q, r\}, \mathcal{U}\}$ be a nts. Then $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ is a $NT_{g\alpha g}$ -space, but not $NT_{\frac{1}{2}}$ -space.

Theorem 4.14: If $h_1: (\mathcal{U}, \tau_{\mathcal{R}}(G)) \to (\mathcal{V}, \sigma_{\mathcal{R}}(H))$ is a Ng α g-continuous map and $h_2: (\mathcal{V}, \sigma_{\mathcal{R}}(H)) \to (\mathcal{W}, \rho_{\mathcal{R}}(I))$ is a Ng-continuous map and $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$ is a NT $_{\frac{1}{2}}$ -space. Then $h_2 \circ h_1: (\mathcal{U}, \tau_{\mathcal{R}}(G)) \to (\mathcal{W}, \rho_{\mathcal{R}}(I))$ is a Ng α g-continuous map.

Proof: Let \mathcal{K} be a N-CS in \mathcal{W} . Since h_2 is a Ng-continuous map and $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$ is a $NT_{\frac{1}{2}}$ -space, $h_2^{-1}(\mathcal{K})$ is a N-CS in \mathcal{V} . Since h_1 is a Ng α g-continuous map, $h_1^{-1}(h_2^{-1}(\mathcal{K}))$ is a Ng α g-CS in \mathcal{U} . Thus, $h_2 \circ h_1$ is a Ng α g-continuous.

Theorem 4.15: Let $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ and $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$ be nts, and $h: (\mathcal{U}, \tau_{\mathcal{R}}(G)) \rightarrow (\mathcal{V}, \sigma_{\mathcal{R}}(H))$ be a map:

- (i) If $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ is a $NT_{\frac{1}{2}}$ -space then h is a Ng-continuous iff it is a Ng α g-continuous.
- (ii) If $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ is a $NT_{g\alpha g}$ -space then h is a N-continuous iff it is a Ng αg -continuous.

Proof:

(i) Let \mathcal{K} be any N-CS in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$. Since h is a Ng-continuous, $h^{-1}(\mathcal{K})$ is a Ng-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. By $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ is a NT $\frac{1}{2}$ -space, which implies, $h^{-1}(\mathcal{K})$ is a N-CS. By theorem (3.3) part (i); $h^{-1}(\mathcal{K})$ is a Ng α g-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Hence, h is a Ng α g-continuous.

Conversely, suppose that h is a Ng α g-continuous. Let \mathcal{K} be any N-CS in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$. Then $h^{-1}(\mathcal{K})$ is a Ng α g-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. By theorem (3.3) part (ii); $h^{-1}(\mathcal{K})$ is a Ng-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Hence, h is a Ng-continuous.

(ii) Let \mathcal{K} be any N-CS in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$. Since *h* is a N-continuous, $h^{-1}(\mathcal{K})$ is a N-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. By theorem (3.3) part (i); $h^{-1}(\mathcal{K})$ is a Ng α g-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Hence, *h* is a Ng α g-continuous.

Conversely, suppose that h is a Ng α g-continuous. Let \mathcal{K} be any N-CS in $(\mathcal{V}, \sigma_{\mathcal{R}}(H))$. Then $h^{-1}(\mathcal{K})$ is a Ng α g-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. By $(\mathcal{U}, \tau_{\mathcal{R}}(G))$ is a N $T_{g\alpha g}$ -space, which implies $h^{-1}(\mathcal{K})$ is a N-CS in $(\mathcal{U}, \tau_{\mathcal{R}}(G))$. Hence, h is a N-continuous.

Remark 4.16: The following diagram shows the relation between the different types of *N*-continuous maps:

Diagram (4.1)

5 Conclusion

The class of Ng α g-CS characterized utilizing N α g-CS forms a nano topology and lies between the class of N-CS and the class of Ng-CS. We likewise present Ng α g-continuous maps by utilizing Ng α g-CS. The Ng α g-CS can be utilized to determine another nano separation axiom.

References

- [1] K. Bhuvaneswari and K.M. Gnanapriya, Nano generalized closed sets in nano topological spaces, *International Journal of Scientific and Research Publication*, 4(5) (2014), 1-3.
- [2] K. Bhuvaneswari and K.M. Gnanapriya, On nano generalized continuous function in nano topological space, *International Journal of Mathematical Archive*, 6(6) (2015), 182-186.
- [3] I.L. Reilly and Vamanamurthy, On α -sets in topological spaces, *Tamkang J. Math.*, 16(1985), 7-11.
- [4] M.L. Thivagar and C. Richard, On nano forms of weakly open sets, *International Journal of Mathematics and Statistics Invention*, 1(1) (2013), 31-37.
- [5] M.L. Thivagar and C. Richard, On nano continuity, *Mathematical Theory and Modeling*, 3(7) (2013), 32-37.
- [6] R.T. Nachiyar and K. Bhuvaneswari, On nano generalized α -closed sets and nano α -generalized closed sets in nano topological spaces,

International Journal of Engineering Trends and Technology, 13(6) (2014), 257-260.

- [7] R.T. Nachiyar and K. Bhuvaneswari, Nano generalized α -continuous and nano α -generalized continuous functions in nano topological spaces, *International Journal of Engineering Trends and Technology*, 14(2) (2014), 79-83.
- [8] Z. Pawlak, Rough Sets, International Journal of Information and Computer Sciences, 11(1982), 341-356.