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Abstract

In this paper we present another classNofCS called Ngag-CS and study
their fundamental properties in nano topologicahses. We also preseNjgag-
continuous maps with some of its properties.
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1 I ntroduction

M.L. Thivagar and C. Richard [4] presented nano topological space (or ssimply
nts) as for a subset G of a universe which is characterized regarding lower and
upper approximations of G. He has additionally characterized nano closed sets (in
short N-CS), nano interior and nano closure of a set. In 2014, Ng-CS was presented
by K. Bhuvaneswari and K.M. Gnanapriya [1]. R.T. Nachiyar and K.
Bhuvaneswari [6] presented the idea of Nag-CS and Nga-CS in nts. The purpose
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of this paper is to present the concept of Ngag-CS and study their essentia
properties in nts. We likewise present Ngag-continuous maps by utilizing Ngag-
CS and concentrate some of their principal properties.

2 Preliminaries

Throughout this paper, (U, 72(G)), (V, ox(H)) and (W, px(D)) (or simply U,V
and W) aways mean nts on which no separation axioms are expected unless
generaly specified. For a set C in a nts (U,14(G)), Ncl(C), Nint(€¢) and
C° = U — C denote the nano closure of C, the nano interior of ¢ and the nano
complement of C respectively.

Definition 2.1 [8]: LetU be a non-empty finite set of objects called thiearse
and R be an equivalence relation ot hamed as the indiscernibility relation.
Elements belonging to the same equivalence classsaid to be indiscernible
with one another. The paffi,, R) is said to be the approximation space.

Remark 2.2 [8]: Let (U, R) be an approximation space afidc U. Then:

0] The lower approximation af with respect tdR is the set of all objects,
which can be for certain classified @&swith respect t&R and it is denoted
by Lz(G). That is, Lx(G) = U{R(a):R(a) S G,a € U}, where R(a)
denotes the equivalence class determined. by

(i) The upper approximation af with respect tar is the set of all objects,
which can be possibly classified &swith respect taR and it is denoted
by Uz (G). That is,Ux(G) = U{R(a): R(a)NG # ¢,a € U}.

(i)  The boundary region aof with respect tcR is the set of all objects, which
can be classified neither & nor as notG with respect taR and it is
denoted byB%(G). That is,Bx(G) = Ux(G) — Lx(G).

Proposition 2.3 [3]: If (U, R) is an approximation space adH S U. Then:
(i) Lz(G) € G S Ux(G).

(i) Lr(¢) = Uz(¢) = ¢ andLzr(U) = Ur(U) = U.

(iii) Ur(GUH) = Ux(G)UUx(H).

(iv) Ur(GNH) S Ux(G)NUR(H).

(V) Lp(GUH) 2 Lyp(G)ULx(H).

(i) Lp(GNH) = Lp(G)NLp(H).

(vii) Lg(G) € Lg(H) andU%(G) < Ux(H) wheneveG € H.
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(viii) Ur(G°) = (Lz(6))° andLgx(G) = (Ux(G))".
(iX) UrUx(G) = LgUx(G) = Uz (G).
(X) LgLz(G) = UrLz(G) = Lz(G).

Definition 2.4 [4]: LetU be the universeR be an equivalence relation @h and
12(G) = {¢, U, Lx(G), Ux(G), Bx(G)} whereG < U. Then by proposition (2.3),
T¢(G) satisfies the following axioms:

0) ¢, U € 12(G).
(i) The union of the elements of any subcollectibr (G) is intx(G).
(i)  The intersection of the elements of anytéirsub collection ofz(G) is in

TR(G).

That is,74(G) is a topology oril called the nano topology dit with respect tdr
and the pair(U, tx(G)) is called a nano topological space (or simpls). The
elements of¢(G) are called nano open sets (in ShiHOS).

Remark 2.5 [4]: Let (U, 74(G)) be ants with respect t&z whereG <€ U andR
be an equivalence relation otd. ThenU/R denotes the family of equivalence
classes oll by R.

Definition 2.6 [4]: A subset of ants (U, 7¢(G)) is said to be a nane-open set
(in short Na-0S) if ¢ € Nint(Ncl(Nint(C))) and a nanaz-closed set (in short
Na-CS) if Ncl(Nint(Ncl(C))) € C. The nanoa-closure of a set of ants
(U, tx(G)) is the intersection of alNa-CS that containC and is denoted by
Nacl(C).

Definition 2.7 [1]: A subsetC of a nts (U,t¢(G)) is said to be a nano
generalized closed set (in shary-CS) if Ncl(C) € M whenevet € M and M
isaN-0S in (U,13(G)). The complement ofMg-CS is aNg-0S in (U, 73(G)).

Definition 2.8 [6]: A subset of ants (U, t¢(G)) is said to be a nanaeg-closed
set (in shortNag-CS) if Nacl(C) € M wheneverlC € M andM is aN-0S in
(U, t2(G)). The complement oflag-CS is aNag-0S in (U, 13(G)).

Definition 2.9 [6]: A subset of ants (U, tx(G)) is said to be a nanga-closed
set (in shortNga-CS) if Nacl(C) € M whenevelC € M andM is aNa-0S in
(U, t2(G)). The complement of Mga-CS is aNga-0S in (U, 1(G)).

Theorem 2.10 [4, 6]: In ants (U, 14(G)), then the following statements hold and
the contrary of each statement is not true:

(i) EveryN-0S (resp.N-CS) is aNa-0S (resp.Na-CS).
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(i) Every N-0S (resp.N-CS) is aNg-0S (resp.Ng-CS).

(i) Every Ng-0S (resp.Ng-CS) is aNag-0S (resp.Nag-CS).
(iv) EveryNa-0S (resp.Na-CS) is aNga-0S (resp.Nga-CS).
(v) EveryNga-0S (resp.Nga-CS) is aNag-0S (resp.Nag-CS).

Definition 2.11: Let (U,tx(G)) and (V,0x(H)) be nts. Then the map
h: (U,t2(G)) — (V,0%(H)) is called:

(1) nano continuous (in shoriN-continuous) [5] if A™1(X) is a N-0S
(resp.N-CS) in (U, 1¢4(G)), for eachN-0S (resp.N-CS) K in (V, ox(H)).

(i) nano a-continuous (in shoriNa-continuous) [7] ifA~1(X) is a Na-0S
(resp.Na-CS) in (U,1(G)), for each N-OS (resp.N-CS) X in
(V, or(H)).

(i)  nano g-continuous (in shorlVg-continuous) [2] ifh~1(K) is a Ng-0S
(resp.Ng-CS) in (U,1(G)), for each N-OS (resp.N-CS) X in
(V, ox(H)).

(iv)  nanoag-continuous (in shorNag-continuous) [7] ifh~1(X) is aNag-
0S (resp.Nag-CS) in (U,13(G)), for each N-OS (resp.N-CS) K in
(V, GR(H))

(V) nanoga-continuous (in shorlga-continuous) [7] ifA"1(K) is aNga-
0S (resp.Nga-CS) in (U,14(G)), for each N-OS (resp.N-CS) X in
(V, GR(H))

Theorem 2.12 [2, 7]: Let h: (U,t3x(G)) — (V,0x(H)) be a map. Then the
following statements hold and the contrary of esigttement is not true:

0] EveryN-continuous map is Aa-continuous.

(i) Every N-continuous map is A g-continuous.

(i)  Every Ng-continuous map is Aag-continuous.
(iv)  EveryNa-continuous map is A ga-continuous.
(v) EveryN ga-continuous map is Aag-continuous.

3  Nano Generalized ag-Closed Sets

In this section we present and study the nano generalized ag-closed sets and some
of its properties.

Definition 3.1: A subset of ants (U,tx(G)) is said to be a nano generalized
ag-closed set (in shoWgag-CS) if Ncl(C) € M whenevelC € M andM is a
Nag-0S in(U,1¢(G)). The family of allNgag-CS of a nts (U, tx(G)) is
denoted bWgag-C(U, G).
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Definition 3.2: The intersection of alNgag-CS in ants (U, tx(G)) containing
C is called nanogag-closure ofC and is denoted bWgag-cl(C), Ngag-
cl(¢) =N{D: ¢ = D,DisaNgag-CS}.

Theorem 3.3: In ants (U, 13(G)), the following statements are true:
(i) EveryN-CS isaNgag-CS.

(i) EveryNgag-CS is aNg-CS.

(iil) Every Ngag-CS is aNag-CS.

(iv) EveryNgag-CS is aNga-CS.

Proof:

(hLet ¢ beaN-CS inants (U, tx(G)) and let M be any Nag-0S containing C.
Then Ncl(C) = C € M. Hence, C isaNgag-CS.

(i) Let ¢ beaNgag-CS inants (U, tx(G)) and let M be any N-OS containing C.
By theorem (2.10); M isaNag-0S in (U, tx(G)). Since C isaNgag-CS, we have
Ncl(C) € M. Hence, C isaNg-CS.

(iii) Let ¢ be aNgag-CS in ants (U, 74(G)) and let M be any N-OS containing
C. By theorem (2.10); M is a Nag-0S in (U, t¢(G)). Since C is a Ngag-CS, we
have Nacl(C) € Ncl(C) € M. Hence, C isaNag-CS.

(iv) Let C beaNgag-CS inants (U, tx(G)) and let M be any Na-0S containing
C. By theorem (2.10); M isaNag-0S in (U, tx(G)). Since C is a Ngag-CS, we
have Nacl(C) € Ncl(C) € M. Hence, C isaNga-CS.

The contrary of the above theorem need not be true as appeared in the following
examples.

Example3.4: Let U = {p,q,7, s} withU/R = {{p},{r},{q,s}} andG = {p, q}.

Lettz(G) = {¢,{r}.{q, s}, {p, q, s}, U} be ants. Then the s€ip, q,r} is aNgag-
CS but notN-CS.

Example 3.5 Let U ={p,q,7,s,t} with U/R = {{s},{p,q},{r,t}} and G =

{p,s}. Lettx(G) = {¢,{s}, {p,q}, {p, q, s}, U} be ants. Then the sefp,r,s} is a
Ng-CS but notNgag-CS.

Example 3.6: LetU = {t,u,v,w} withU/R = {{t}, {v}, {v,w}} andG = {t, u}.
Lettz(G) = {¢, {t}, {u, w}, {t,u,w}, U} be ants. Then the sdit, v} is aNga-CS
and hence&Vag-CS but notNgag-CS.



44 Qays Hatem Imran et al.

Definition 3.7: A subset of ants (U,tx(G)) is said to be a nano generalized
ag-open set (in shorlNgag-0S) iff U —C is a Ngag-CS. The family of all
Ngag-0S of ants (U, t¢(G)) is denoted bWgag-0(U, G).

Definition 3.8: The union of alNgag-0S in ants (U, tx(G)) contained inC is
called nanogag-interior of ¢ and is denoted by gag-int(C), Ngag-int(C) =
U{D:c 2D,DisaNgag-0S}.

Proposition 3.9: Let ¢ be any set in aats (U,74(G)). Then the following
properties hold:

(i) Ngag-int(C) = Ciff CisaNgag-0S.

(i) Ngag-cl(C) =cC iff cisaNgag-CS.

(iii) Ngag-int(C) is the largesiNgag-0S contained irC.
(iv) Ngag-cl(C) is the smallesWgag-CS containingC.
Proof: (i), (ii), (iii) and (iv) are obvious.

Proposition 3.10: Let ¢ be any set in aits (U, t¢(G)). Then the following
properties hold:

() Ngag-int(U — C) = U — (Ngag-cl(C)),
(i) Ngag-cl(U — C) = U — (Ngag-int(C)).
Proof:
(i) By definition, Ngag-cl(C) = N{D:C < D,D isaNgag-CS}
U — (Ngag-cl(C)) =U—-N{D:¢ < D,DisaNgag-CS}
= U{U—-D:C < D,DisaNgag-CS}
= U{M:U — C 2 M, M isaNgag-0S}
= Ngag-int(U — C).

(i1) The proof issimilar to (i).

Theorem 3.11: Let (U, tx(G)) be ants. If C is aN-0S, then it is aNgag-0S in
(‘U, TR(G))

Proof: Let C beaN-0S inants (U, t2(G)), then U — C isaN-CS in (U, tx(G)).
By theorem (3.3) part (i); U — C is a Ngag-CS. Hence, C is a Ngag-0S in
(U, 72(6)).
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Theorem 3.12: Let (U, t4(G)) be ants. If C is aNgag-0S, then it is aNg-0S
in (u, TR(G))

Proof: Let C be a Ngag-0S in ants (U,tx(G)), then U — C is a Ngag-CS in
(U, t2(G)). By theorem (3.3) part (ii); U — C isaNg-CS. Hence, € isaNg-0S in
(U, 72(6)).

Lemma 3.13: Let (U, tx(G)) be ants. If C is aNgag-0S, then it is aNag-0S
(resp.Nga-0S) in (U, 13(G)).

Proof: Similar to above theorem.

Proposition 3.14: If C andD are Ngag-CS in ants (U, t¢(G)), thenCUD is a
Ngag-CS.

Proof: Let ¢ and D be Ngag-CS in ants (U, 7¢(G)) and let M be any Nag-0S
containing C and D. ThenCUD € M. ThenC € M and D € M. Since C and D
are Ngag-CS, Ncl(€C) € M and Ncl(D) € M.

Now, Ncl(CUD) = Ncl(C)UNcl(D) € M and so Ncl(CUD) € M.
Hence, CUD isaNgag-CS.

Proposition 3.15: If ¢ andD are Ngag-0S in ants (U, t¢(G)), thenCND is a
Ngag-0S.

Proof: Let ¢ and D be Ngag-0S inants (U, t¢(G)). ThenU — Cand U — D are
Ngag-CS. By proposition (3.14); (U —-C)U(U—-D) is a Ngag-CS. Since
(U-0O0)U(U-D) =U-(ND). Hence, CND isaNgag-0S.

Proposition 3.16: If a setC is Ngag-CS in ants (U,tx(G)), thenNcl(C) —C
contains no non-empty-CS in (U, T (G)).

Proof: Let C be a Ngag-CS in a nts (U,7(G)) and let F be any N-CS in
(U, t2(G)) such that F < Ncl(C) — C. Since C is a Ngag-CS, we have Ncl(C) <
U—F. This implies F € U — Ncl(C). Then F < Ncl(C)N(U — Ncl(C)) = ¢.
Thus, F = ¢. Hence, Ncl(€) — € contains no non-empty N-CS in (U, 7¢(G)).

Proposition 3.17: A setC is Ngag-CS in a nts (U, tx(G)) iff Ncl(€)—¢C
contains no non-emptyag-CS in (U, tx(G)).

Proof: Let C be a Ngag-CS in ants (U, tx(G)) and let § be any Nag-CS in
(U, t2(G)) such that § < Ncl(C) — C. Since C is a Ngag-CS, we have Ncl(C) <
U—S. This implies § €U — Ncl(€C). Then § € Ncl(€)N(U — Ncl(C)) = ¢.
Thus, S isempty.
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Conversely, suppose that Ncl(€) —C contains no non-empty Nag-CS in
(U, 72(G)). Let € € M and M is Nag-0S. If Ncl(€) € M then Nel(C)N(U —
M) is non-empty. Since Ncl(C) is N-CS and U — M is Nag-CS, we have
Ncl(e)N(U — M) is hon-empty Nag-CS of Ncl(C) — € which is a contradiction.
Therefore Ncl(C) € M. Hence, C isaNgag-CS.

Theorem 3.18: If C is aNag-0S and aNgag-CS in ants (U, tx(G)), thenC is
aN-CS in (U, tx(G)).

Proof: Suppose that C is a Nag-0S and a Ngag-CS in a nts (U, tx(G)), then
Ncl(C) € € andsinceC < Ncl(C). Thus, Ncl(C) = C. Hence, C isaN-CS.

Theorem 3.19: If C is a Ngag-CS in ants (U,tx(G)) andC € D S Ncl(C),
thenD is aNgag-CS in (U, 13(G)).

Proof: Suppose that C isaNgag-CS in ants (U, 13(G)). Let M be aNag-0S in
(U, 72(G)) suchthat D € M. Then C € M. Since C isaNgag-CS, it follows that
Ncl(€) € M. Now, D < Ncl(C) implies Ncl(D) € Ncl(Ncl(C)) = Ncl(C).
Thus, Ncl(D) € M. Hence, D isaNgag-CS.

Theorem 3.20: If C is aNgag-0S in ants (U, tx(G)) andNint(C) €D < C,
thenD is aNgag-0S in (U, tx(G)).

Proof: Suppose that C is a Ngag-0S in ants (U, tx(G)) and Nint(C) €D < C.
ThenU —CisaNgag-CSand U —-C<SU—-DES Ncl(U—-C). ThenU—-D isa
Ngag-CS by theorem (3.19). Hence, D isaNgag-0S.

Theorem 3.21: A setC isNgag-0S iff P € Nint(C) where? is aNgag-CS and
Pcc.

Proof: Suppose that P € Nint(C) where P is a Ngag-CS and P < C. Then
U—-C<SU—-P andU— P isaNag-0S by lemma (3.13). Now, Ncl(U — C) =
U —Nint(C) € U—P.ThenU — C isaNgag-CS. Hence, C isaNgag-0S.

Conversdly, let C be a Ngag-0S and P beaNgag-CSand P € C. ThenU —C <
U—P. Since U—C isaNgag-CS and U — P is a Nag-0S, we have Ncl(U —
C) CU—-P.ThenP < Nint(C).

Remark 3.22: The following diagram shows the relation betweea different
types ofV-CS:



On Nano Generalized Alpha Generalized... 47

Z
O
n
Y
Z
)
Q
og
O
n
Y
Z
o9
)
wn

Diagram (3.1)

4  Nano Generalized ag-Continuous M aps

In this section we present the nano generalized ag-continuous maps and study
some of their crucial properties.

Definition 4.1: A map h: (U,173(G)) — (V,04x(H)) is said to be a nano
generalizedrg-continuous (in shorl gag-continuous) ith™1(X) is aNgag-CS
in (U, 7 (G)) for everyN-CS K in (V, o3 (H)).

Theorem 4.2: Let (U, tx(G)) and (V,0x(H)) be nts, and h: (U, tx(G)) —
(V,0x(H)) be a map. Theh is aNgag-continuous map ifk~1(X) is aNgag-
0S in (U, tx(G)), for everyN-0S K in (V,ax(H)).

Proof: Let K be a N-OS in (V,0%(H)). Then K¢ is a N-CS in (V,0%x(H)), so
h~1(K°) = (h"1(K))¢ isaNgag-CS in (U, t¢(G)). Thus, h~1(¥) isaNgag-0S
in (U, tx(G)). The proof of the opposite is obvious..

Proposition 4.3. EveryNgag-continuous map is Aag-continuous.

Proof: Let h: (U, 72(G)) — (V, 04 (H)) be aNgag-continuous map and let X be
aN-CS in (V,0%x(H)). Since h is a Ngag-continuous, h~1(X) is a Ngag-CS in
(U, t2(G)). By theorem (3.3) part (iii); h~1(K) isaNag-CS in (U, T (G)). Thus,
h isa Nag-continuous.

Proposition 4.4: EveryN gag-continuous map is A ga-continuous.

Proof: Let h: (U, 74(G)) — (V, 04 (H)) be aNgag-continuous map and let X be
aN-CS in (V,04(H)). Since h is a Ngag-continuous, h~1(X) is a Ngag-CS in
(U, t2(G)). By theorem (3.3) part (iv); h~1(K) isaNga-CS in (U, t4(G)). Thus,
h isaNga-continuous.

The contrary of the above propositions need not be true as appeared in the
following example.
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Example 4.5: Let U = {p,q,r, s} with U/R = {{p},{q},{q,s}} and G = {p, q}.

Let t2(G) ={¢,{r}{q,.s}{p,q.s}, U} be ants. Let V ={t,u,v,w} with

V/R = {{u}, {w},{t,v}} and H = {t,u}. Let ox(H) = {¢, {u}, {t, v}, {t,u, v}, V}

be a nts. Define a maph: (U,13x(G)) — (V,0x(H)) as h(p) =v, h(qg) =

t,h(r) = w,h(s) = u. Thenh is a Nga-continuous and hencBag-continuous
but notNgag-continuous.

Theorem 4.6: If h: (U, t2(G)) — (V,04x(H)) is a Ngag-continuous map then
for each point of U andD € g (H) such thath(c) € D, there exists & gag-
0S C of (U, 73(G)) such that € ¢ andh(C) € D.

Proof: Let ¢ be a point of U and D € ox(H) such that h(c) € D. Take C =
h=1(D). Since V — D isaN-CS in (V,0%(H)) and h is a Ngag-continuous map,
we have h™1(V —D) =U — h™1(D) is a Ngag-CS in (U, t4(G)). This gives
C = h (D) isaNgag-0Sin (U, tx(G)) andc € C and h(C) = h(h~1(D)) € D.

Definition 4.7. A map h: (U,173(G)) — (V,03x(H)) is said to be a nano
generalizedrg-irresolute (in shortVgag-irresolute) ifh=1(K) is aNgag-CS in
(U, 72(G)) for everyNgag-CS K in (V, o3 (H)).

Theorem 4.8: Let (U, tx(G)) and (V,0x(H)) be nts, and h: (U, tx(G)) —
(V,04x(H)) be a map. Theh is aNgag-irresolute map iffh~1(K) is aNgag-
0S in (U,tx(G)), for everyNgag-0S K in (V, o3 (H)).

Proof: Let K be a Ngag-OS in (V,ox(H)). Then V — X is a Ngag-CS in
(V,0x(H)), s0 h"Y(V —XK) = U — h™1(K) is aNgag-CS in (U, t4(G)). Thus,
h~1(K) isaNgag-0S in (U, tx(G)). The proof of the oppositeis obvious..

Proposition 4.9: EveryNgag-irresolute map is & gag-continuous.

Proof: Let h: (U, 12(G)) — (V,0%x(H)) be a Ngag-irresolute map and let K be
a N-CS in (V,03%(H)), by theorem (3.3) part (i), then K is a Ngag-CS in
(V,0x(H)). Since h is a Ngag-irresolute, then h™1(K)is a Ngag-CS in
(U, t2(G)). Thus, h is a Ngag-continuous.

Definition 4.10: A nts (U, 7¢(G)) is said to be a nan®i-space (in shoriVT:-
2 2
space) if everWg-CS initis aN-CS.

Definition 4.11: A nts (U,1¢(G))is said to be a nand,,,-space (in short
NTy.4-space) if everWgag-CS initis aN-CS.

Proposition 4.12: EveryNT:-space is aVT,,4-Space.
2
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Proof: Let (U, tx(G)) be a NT1-space and let C be a Ngag-CS inU. Then C isa
2
Ng-CS, by theorem (3.3) part (ii). Since (U, t¢(G)) isaNT1-space, then C isa N-
2
CSinU. Hence, (U, 2(G)) isaNT,,q-space.

The following example demonstrates that the contrary of the above proposition
not be true.

Example4.13: LetU = {p,q,r} withU/R = {{p},{q,7r}} andG = {p,7}.
Let7x(G) = {¢,{p}.{q, 7}, U} be ants. Then(U, tx(G)) is a NTy4-space, but
not NTi-space.

2

Theorem 4.14: If hy: (U, 12(G)) — (V,0%(H)) is aNgag-continuous map and
h,: (V,0x(H)) — (W, pr(1)) is aNg-continuous map an@V, oz (H)) is aNT1-
2

space. Then, o hy: (U, T2(G)) — (W, pr(I)) is aNgag-continuous map.

Proof: Let K be a N-CS in W. Since h, is a Ng-continuous map and

(V,0x(H))is a NT1-space, h, "(K) is a N-CS in V. Since h; is a Ngag-
2

continuous map, h; ~*(h, (%)) is a Ngag-CS in U. Thus, h, o h, is a Ngag-

continuous.

Theorem 4.15: Let (U, 7¢(G)) and (V,o¢x(H)) be nts, and h: (U, 73(G)) —
(V,0%(H)) be a map:

0] If (U,7tx(G)) is aNTi-space therh is a Ng-continuous iff it is aVgag-
2

continuous.

(i) If (U, 72(G)) is aNT,,,-space therh is a N-continuous iff it is aVgag-
continuous.

Proof:

(i) Let K be any N-CS in (V,a4(H)). Since h is a Ng-continuous, h™1(X) is a

Ng-CS in (U, 72(G)). By (U, 7x(G)) is a NT1-space, which implies, h~1(X) isa
2

N-CS. By theorem (3.3) part (i); h~1(K) isaNgag-CS in (U, t4(G)). Hence, h is

aNgag-continuous.

Conversaly, suppose that h is a Ngag-continuous. Let K be any N-CS in
(V,04x(H)). Then h~1(XK) isaNgag-CS in (U, 7x(G)). By theorem (3.3) part (ii);
h™1(%) isaNg-CSin (U, 7x(G)). Hence, h is aNg-continuous.

(ii) Let K be any N-CS in (V, o0z (H)). Since h is a N-continuous, h~1 (%) isaN-
CS in (U, t2(G)). By theorem (3.3) part (i); h~1(K) isaNgag-CS in (U, 7x(G)).
Hence, h is a Ngag-continuous.
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Conversdly, suppose that h is a Ngag-continuous. Let K be any N-CS in
(V,04x(H)). Then h™1(K) is a Ngag-CS in (U, tx(G)). By (U,tx(G)) is a
NT,qq-space, which impliesh™' (X) is a N-CS in (U, 72(G)). Hence, h is a N-
continuous.

Remark 4.16: The following diagram shows the relation betweea different
types ofV-continuous maps:

) | ) P :
Na-continuous [“ 7| Nga-continuous [T | Nag-continuous
1 A N I

Y | A 4 | A 4
N-continuous [T | Ngag-continuous [+ Ng-continuous
U is NTyqq-Space Uis NT%-space

Diagram (4.1)

5 Conclusion

The class of Ngag-CS characterized utilizing Nag-CS forms a nano topology and
lies between the class of N-CS and the class of Ng-CS. We likewise present Ngag-
continuous maps by utilizing Ngag-CS. The Ngag-CS can be utilized to determine
another nano separation axiom.
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