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Abstract

On the example of research of the simplest eleti@R-circuits it is shown
that they have different frequencies correspondiogvarious definitions of
resonance at real frequencies. Consequently, teen@nce theory is imperfect.
Proceeding from the geometric sense of Cassinial, dlke resonance theory
based on complex frequencies free of the aforeoredi contradictions is
suggested. The physical meaning of resonance orplernfrequencies is
explained. The physical reality of resonance onmemfrequencies is concluded.

Keywords. Resonance, Real Frequenci€amplex Frequencies, LCR electric
circuits.

1 I ntroduction

Resonance is well-known and widely used naturahpimenon. Nonetheless, it has
not been studied in full yet. People often encaumésonance in mechanics,
hydraulics, radio electronics etc. The simplest dionof theoretical and practical
study of its peculiarities is the electric cirqoibcesses.
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2  Hypotheses
By present time for an explanation of a resonanissoifered two hypotheses:

. The resonance takes place on real frequencies.
. The resonance takes place on complex frequencies.

And it is supposed, that first hypothesis corresigoto physical essence of a
resonance, and second hypothesis is sometimedarsaagineering calculations.

3  Hypotheses Testing

3.1 Testing of Resonance on Real Frequencies

Generally accepted interpretation of resonancedreiccuits is not inconsistent and
therefore, does not draw objections.

However, since LC circuits are of marginal pradticéerest, the aforementioned
interpretation of resonance is usually general@ethe examples of LCR circuit.
Upon resonance in LCR two pole circuits it is siugjgé that:

. Complex resistance and complex conductivity of @-pmele circuit is
becoming purely active, and as a result the foomstituent of response
and pure influence coincide in phase — let's rébethis statement as the
first definitive attribute of resonance;

. Complex resistance and complex conductivity of @ pele circuit possess
extreme module value, through which the amplitubl®orced constituent
of extreme module value, through which the ampétudf forced
constituent of response is becoming max or minaesgely — let's refer
to this statement as the second definitive of rasoe;

. Resonant frequency coincides with the frequenay diillations.

And upon resonance in LCR multi pole circuits isigygested that:

. The complex value of transfer function is becommngely active, and,
respectively, the response and influence coingidghase — let’s refer to
this statement as the third definitive attributeefonance;

. The complex transfer function and, respectively #mplitude of forced
constituent of response possess extreme module valiet's refer to this
statement as the fourth definitive attribute obreance;

. Resonant frequency coincides with frequency of &isallations.

However, the given interpretation of resonance iGREcircuits cannot be
acknowledged as perfect, for it entails contradict@sults even in the simplest
cases. Let’'s prove it on the examples of resonant® simplest LCR circuits in
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the form of series RLC circuits.

Complex resistance of series RLC circuit showrignTa, will be equal to

a%+ j(wz _Llcj _ | 200w+ j(w2 _%2)

Z(Ja)):L o o

1)

Fig. 1: The electric LCR-circuit under consideration

That's why it's reactive constituent in accordamgth the first definitive attribute
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of resonance, acquires zero value on resonantdreyus, o; = Gy -

.2
'mZ(Ja)=La;wab =p abw

@y

On this frequency the complex resistance of LCRuiiris becoming purely
active

Z(jwresl): r :g
_|L_ 1 _ . N
where p=,|—=——=ayL — wave resistance of LCR-circuit;
C aC

I~
RS
£

Q= \/I: = — Q factor of LCR circuit.
rvC r 20

The complex resistance module of such LCR-cirogitads to

=p (2)
ah

Studying the radicand in the last proportion onélkeme we find the value of

resonant frequency, corresponding to the aforemesti second definitive

attribute of resonance in LCR two pole circuiig.s, = ay .
In view of the findings in (2) it follows that

an .ol 2]

: . -P
Z =r ==

(JwreSZ) Q
As is clear, in the given LCR circuits the valuet resonant frequency
corresponding to the first and the second defiaitittributes of resonance in LCR
two pole circuits, are found to be equal. And iéres to be quite natural since
they determine the same phenomenon, i.e. reson&oce, different points of
view. However, it is not always the case, as isxshoext.

In fact, for the second series LCR circuit (fig), lthe complex resistance of which
equals to
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- 1
Z(jw)= LR)C&H J(“’z _I_Cj _ | 20w j(a)z —%2)

w-j— w- |20y
RC
from equation
i 2
e (S8
ImZ(jw):Lw(A'ao +w2—2ab ):p 2 _Q : h ~0
a)2+40-0 w 1
i + -
%j Q?

we receive the aggregate of two decisions (not )pongfoper to resonant
frequencies

@esy =0

ey = @y” ~ 40y = ab—“Q;_l o

Studying the radicand of circuit complex resistammlule on extreme

(@), (@)
|z(jw)1=L\/4"02":)2i%’;}abz)2 =p QZ(GEE;T[(&:J } )

T2
ah Q

i.e. solving equation

d | 40,°0P + (wz - %2)2 _ Zw[w“ + @80y + (16004 -80,° - %4)] “o
dw o +40,° o +40y°

We receive another aggregate of two decisions propgsonant frequencies

%220

RIS e G ©

Circuit resistance on resonant frequencies ofitedggregate will be
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/M (6a)
(6b)

Z(jate) =R
(Ja‘iesl)

0"‘
Qv

and complex circuit resistance on resonant fregesnaf the second aggregate
will be

Z(jeez) =R=Q (7a)

\/2Q1/Q +2 (1+2Q ) (7h)

(‘452

From comparison of expressions (6) and (7) igiardhatZ (j afes; ) # |Z (jafesy ) -
Complex resistance of another LCR circuit (fig.\all be equal to

C‘JRchrj(w2 Llcj L%[Zaowﬂ(wz ab)]

Z(jw)=L
W+ jw2 L “’(“b + 1200“’)

Its reactive constituent

ol -00?) ']
ImZ(jow)= L& o +4ajgw2)% | =

Possesses zero value on resonant frequency

2
et = 2=y 2 ®)
Cbb _40-0 Q _1

On this frequency the complex circuit resistandeegisoming active
(9)

Let’s calculate the module of complex resistancsuzh LCR circuit:
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()
2 2l T
4002%2a]2+(wz_%2) %2: Q% @

&

2

40,° 08" + ol

w
@y

(10)
1

Q2

Studying of the radicand (10) on extreme allowdifig resonant frequency
proper to the second resonant frequency

Wesy = by

%3 [%2_'_80.02 +40.02%2 .

%4 + 8002%2 - 16004

(11)

On this resonant frequency the complex resistaraduia of studies circuit looks

as follows
Tablel
| Co';'%/ Co';'%% wreﬁ/ a‘reﬁ%
gl Q @ (3 @ (5) a (8) @
(11)

0 1,000 000 000 0,000 000 00D 0,855599 77 1,168 770 894
0,1 1,258 925 412 0,607 488 811 0,934 349493 611@0 853 | 1,070 263 33]
0,2 1,584 893 192 0,755 8175323 0,970 629 714288 962 894| 1,030 259 00p
0,3 1,995 262 315 0,865 338868 0,987 181 020 1616545 | 1,012 985 44(
0,4 2,511 886 432 0,917 338913 0,984538 §77 11090649 | 1,005 491 11]
0,5 3,162 277 660 0,948 683 298 0,997 719 958 1002453 | 1,002 285 252
0,6 3,981 071 706 0,967 938 152 0,999 062 5§37 11@3360 | 1,000 938 343
0,7 5,011 872 336 0,979892486 0,999618 4134 15@P0L23 | 1,000 381 411
0,8 6,309 573 445 0,987 360 692 0,999 846 091 21801 105 | 1,000 153 93]
0,9 7,943 282 347 0,992043884 0,999938 177 1000823 | 1,000 061 827
1,0 10,000 000 000 0,994 987 437 0,999 975 247 51030 815 | 1,000 024 754
1,1 12,589 254 118 0,996 840 221 0,999990 110 31169 795 | 1,000 009 891
1,2 15,848 931 925 0,998 007 479 0,999 996 053 11996 499 | 1,000 003 94]
1,3 19,952 623 150 0,998 743 267 0,999 998 427 11268 314 | 1,000 001 571
1,4 25,118 864 315 0,999 207 239 0,999 999 373 01703 390 | 1,000 000 62]
1,5 31,622 776 602 0,999499 875 0,999 999 750 01500 375 | 1,000 000 25(
1,6 39,810 717 055 0,999 684 472 0,999 999 901 01326 628 | 1,000 000 099
1,7 50,118 723 363 0,999 800927 0,999 999 960 01199 113 | 1,000 000 04(
1,8 63,095 734 448 0,999 874 398 0,999 999 984 01126 618 | 1,000 000 014
1,9 79,432 823 472 0,999 920 752 0,999 999 994 01009 254 | 1,000 000 OOQ
2,0 100,000 000 00} 0,999949999 0,999 999 998 001060 004 | 1,000 000 001




Physical Reality of Complex Numbers is... 41

) 2 2-2 4 -1
2(japecy) = p, | 2O NQ +272Q° Q" +4Q7 (12)
203,07 +2 +Q° +20% +Q?

Table 1 contains the results of formula (3), (B),dnd (11) valuation.

Comparison of expressions (9) and (12) allows dngweonclusion that
Z(jwreﬁl) 7 |Z(jwrszx .

The similar results are produced by study of par&lCR circuits, since they are
dual to series LCR circuits.

From the cites analysis it proceeds that the gégesacepted interpretation of

resonant on real frequencies in LCR two pole ciscwiannot be accepted as
satisfactory, since the first and the second defmiattributes of resonance in
some circuits have different corresponding resofff@ouencies. Moreover, even
in LCR two pole circuits with equal complexity ldvand similar structure the

number of resonant frequencies may vary.

Let's now pass to the simplest LCR multi pole citkuFig. 1d — 1i shows
inclusion of series LCR circuits as four pole citsulLet's calculate the transfer
coefficient under voltage of LCR four pole circ(fig. 1d).

1
Ue . e ciw® (13)
UetU !+l - @?) 2000+ 10 - )

kuc =

Its reactive constituent
_1(6«)]
- 20,0’ Qlah
2
40,%0? + (o - %)Z ( J(wj2+(wj2_l
Q) \ay o

possesses zero value on resonant frequengy =0, on which the complex
transfer function is becoming purely active andado k(ja;res3) =1.

Imkyc (jw) =

As a result of study of transfer function moduléhaf given circuit
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2
1
|kuc Jw % =

o) Ll ey

on extreme we find the following aggregate of resarirequencies for it

‘454 =0

2_ 14
Wess =" — 205" = ab ZEQZ : 4

On the first resonant frequency,«3 the transfer function module of such LCR

circuit possesses Va|l.|thC(j(4%4X =1, and on the second resonant frequency
Gresn — It pOSSESSES Value

. 2 2Q?
oo 6das) =~ -
Focllefen) 200\/%2 -0,? 4Q%-1

The voltage transfer coefficient in LCR four polecait shown in fig. le, looks as
follows

ro.
LN UL _ wf+ j(dz _ 20’0(0'"' JCUZ X
kUL(Jw)—U U, T 1) (wz 2) (15)
cTHEL w+j(wz—j 200w |\~ ab
L LC
Its reactive constituent
la)
. 20 Q
Imky, (Jw) = Owab %

T ]

possesses zero value on resonant frequepgy = 0, on which the complex transfer
function becomes purely active and equak((j)wmg,) =0.

Study of transfer function module of this LCR citcu
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oo | olal 1)
el o
Q \awy @

On extreme allows finding the following aggregateesonant frequencies

Whess =0
|y +80y +w? JQ2+2+Q (16)
64654 = 2 :% T

On these resonant frequencies the transfer funetmiule possesses values

|kUL(j‘4es4x =0

a\ay’ +80y” +40,” + @y’

a2 +80y2 + 40,7 -

|kUL(ja4'a4X =

The complex transfer function of LCR four pole aitcshown in fig. If, looks as
follows

1
- o
)= LC STR—— L 17
kUC(Jw) w1+1(a)2_1j 20’0(0+j(&]2—ab2) ( )
RC LC

and complex transfer function of LCR four pole gitcshown in fig. Ig, looks as
follows

(18)

As is clear, expressions (17) and (18) are comlplébe same as formulas (13)
and (15) evaluated above.

The transfer coefficient of LCR four pole circuttasvn in fig. |h, will look as
follows
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1.1
[ il L2
ko (j@)= rc 'Lc 200w |ty
oL + J[wZ— j 200w+ j|@® - wn?)
RC L

Its reactive constituent

1( “’T
. 20 w° Ql\w
Im kyc (jw) = . = -

T e

possesses zero value on resonant frequepgy = 0, on which the complex transfer
function becomes purely active and equd{@')a;r&) =1.

This transfer function module looks as follows

4002w2+(w2—w02)_ LEZJ, i2_1
Q? @y @Wo

Study of the last expression on extreme allowsrdeteng the aggregate of its
resonant frequencies

2
l | w
| = +1
e o) - [T ey

‘4%4 =0

2 2 _ .2 19
s = ah awhy” +80,° — ay :%\/QW‘QZ (19)

40,°

The transfer function module of studied LCR cirantthese resonant frequencies
possesses values

lkuc (jadess) =0

4

- 8
|kuc(1wr$4)|:\/ 3 2 > 004 2 9 i
o \/wo +80y" +80¢ —40p ay” ~ap
1

_\/2Q3\/Q2+2 +1_2Q2_2Q4
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The transfer function of LCR circuit shown in flg.looks as follows

j w? _ jw

2
1 (,2_1 _20w+j(w2— 2)
W+ jlw - 0 Wy
RC LC

kuL (j(d)=

Its reactive constituent

1( w)
3
Im kyc (jw) = 290% = Q1%

ST ]

possesses zero value on resonant frequepgy = 0, on which the complex transfer
function becomes purely active and equd{@nr&) =0.

Study of this transfer function module

“’Hwozwz‘fz(wz_%zf 0 w(‘:j o7
BRER

Q2@

ko (i

2] 2]

On extreme allows finding the following resonaeginencies for it

‘454 =0
2Q? (20)

2
. _ ah -

ooy = 2= |-

abz - 20'02 2Q° -1

The transfer coefficient module on these frequenegials to

|kUL(jC‘4@4X =0

. 2 / 2Q2
koL (jefesa) = “h -
UL es4 20_0\/%2 _0.02 4Q2 -1

The above-stated analysis of LCR four pole circail®ws claiming that the
generally accepted interpretation of resonanceeafl frequencies in LCR multi
pole circuits is unsatisfactory too, since the samenomenon (resonance) in one-
type circuits has multiple various resonant freqies
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The existing interpretation of resonance in LCRuiis is imperfect yet because, as
is noted in writing [1], its does not allow explamig the variance in resonant

frequencies and free oscillation frequencies instlme LCR circuits.

Table 2 shows the results of formula (14), (169) @nd (20) valuation.

Table?2
II “;’es% a‘?es% “;’es% a‘?es%

gQ Q n (14) n (16) n (19) m (20)
0 1,000 000 000 0,707 106 78l 1,168 770894 0,89%37 | 1,414 213 562
0,11 1,258 925 412 0,827 358 041 1,118 920333 30/88 517 | 1,208 666 56
0,2 ] 1,584 893 192 0,894 956 097 1,081 718 388924 455 051 1,117 373 24
0,3 ] 1,995 262 315 0,935096 614 1,054920 616 (038627 | 1,069 408 214
0,41 2,511 886 432 0,959559 972 1,036 242466 ()265.10 | 1,042 144 344
0,51 3,162 277 660 0,974679434 1,023583 195 Q80658 | 1,025 978 357
0,6 ] 3,981 071 706 0,984 099656 1,015190053 383232 | 1,016 157 25(
0,7 ] 5,011 872 336 0,989997 294 1,099 714893 @B98®B78 | 1,010103 77]
0,8 ] 6,309 573 445 0,993700442 1,006 183649 308864 354 | 1,006 339 494
0,9 | 7,943 282 347 0,996 029886 1,003923 425 ()996709 | 1,003 985 934
1,0 ] 10,000 000 000 0,997 496 87 1,002 484 337 70129 620 | 1,002 509 414
1,1] 12,589 254 118 0,998421 361 1,001571214 80439 251 | 1,001 581 13§}
1,2 ] 15,848 931 925 0,999 004 236 1,000 992 802 9m98 182 | 1,000 996 754
1,3 ] 19,952 623 150 0,999371831 1,000626988 9193 404 | 1,000 628 564
1,4] 25,118 864 315 0,999603698 1,000 395831 905949 324 | 1,000 396 459
1,5] 31,622 776 602 0,999 749949 1,000 249 §44 90799 209 | 1,000 250 094
1,6 ] 39,810 717 055 0,999 842 248 1,000 157 677 918992 343 | 1,000 157 77]
1,7 ] 50,118 723 363 0,999 900468 1,000 099 302 90999 485 | 1,000 099 541
1,8 ] 63,095 734 448 0,999937 201 1,000062 187 9039 188 | 1,000 062 801
1,9 79,432 823 472 0,999 960 3777 1,000039 618 9189 379 | 1,000 039 62%
2,0 1 100,000 000 000} 0,9999750Q00 1,000 024 998 99095 000 | 1,000 025 00

In fact, e.g., upon stimulation of LCR two polectiit shown in fig. 4, by voltage
jump

u(t)
The Laplas mapping of which looks as follows
L
D’
There occur free oscillations, the Laplas mappihglach looks as follows

U i
1 (p)=—"-G % 5
@l p°+205p+ay

U, [(t),

U(p)=
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And original equals to

1t)= % [expl- gt sinfwn et (1) (21)

On frequencyy e =/ a.bz - 002 other than resonant frequenky,s = &g -

However, it should be noted that variance of aflorent frequencies and free
oscillation frequencies, found above, fromn, value, as proceeds from
aforementioned tables, in most practical casestiger insignificant. That's why it

is often ignored. But still, this variance alwayssés. And that's why it should be

explained.

Therefore, the generally accepted interpretatiorresionance in LCR circuits

cannot be recognized as perfect because of it4cehtings. Consequently, it is

necessary to develop consistent interpretatioresdnance in LCR circuits and to
explain the detected conflicts in existing resomeanterpretation on its basis.

3.2 Testing of Resonance on Complex Frequencies

One cannot help noticing that the formulas for ittemice function module of all
considered simplest LCR circuits contain the sarpeession

2
(wz - abz) +40,°af (23)
which in view of (22) can be re-written as follows
2
(a; - a%reez - 002) + 40-02"}

This expression is the determinant of resonantetigs of respective LCR circuits.
But the same expression is available on Cassimalheguation [2]

2
(6 ~ae -2 + 020 =t (24)
Which can be written as follows

(1= Prrea\P2 — Prree )L~ Pirea)\ P2~ Prrea) =L 6 (-0 + jtred] %
X[=jw-(-0p ~ jakel[j- (-G — kel [jw (- +ihed] = (25
— 4242 =d*
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where piee12 =—0p * Wy are the complex associated frequencies of free
oscillations (21) in studied LCR circuits;

P12 =*jw are the complex frequencies of pure influence.

L J

Fig. 2: Cassinian ovals

Consequently, Cassinian ovals represent geometric place of points
(fig. 2a) Pfreel(_ 0o n+jwfree) and  pfreer (_ Oo ’_jwfree) on complex plane

o, ja the production of square distance of whhl:ﬁ and d22 from two other
points p;(0,+jw) and p,(0,-jw) is a constant value equal . And since the
physical mapping of pointY e and pger IN fig. 2a are free damped

oscillations, and the physical mapping of poiptsand p, — input continuous

oscillations, one can draw a conclusion that imnuéa function module of
respective LCR circuits upon resonance possesdesmex value as a result of

decrease ofi*value, i.e. at the expense of approaching of pairs of complex
associated frequencies of pure influence and feedlations on the complex plane
the in studied LCR circuits. As is clear, upon pumfuence with LCR circuit one
cannot haval =0.

One can havel =0 when gy =0 and wy, = ak, i. €. upon pure influence with
LC-circuit, when point p1(0,+ja)) coincides with poinq;freel(o,ﬂwfree), and
point p,(0,-jw) coincides with point p reez (0, j Wiree ). Meanwhile Cassiman
ovals are degenerated into two points.
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One can also have =0 upon influence of damped oscillations with LCR-uitc
In this case Cassiman ovals may be viewed as a ejdonplace of points
Pireel2 = —0p % JWsee ON the plane of complex frequenciew, ja equally

remote in the aforementioned sense from two otbetpp, , = -0+ jw .

The equation corresponding to such approach istluaving:

(73— Prrea\Pa — Prrea)Ps — Prrec)\Pa — Prres) = [0+ [ (=0 + [ Gtree)] X
x[-0-jw (-0 ~ jwhe) [0+ (-0 — jwhe)| [0~ jw— (-0 + [t ee)] = (26)

Cassiman ovals, corresponding to equation (26)staoevn in fig. 2b.

On the grounds of the foresaid one can formulage ftllowing definition of
resonanceResonance if a phenomenon of extreme change inmedea values
(amplitude, phase&)f forced constituent of responder electric circuits these are
voltage, current, capacityf oscillating systems upon approaching of complex
influence frequencies and free component of regons

Let's explain this definition with example. Let tle®nsidered series oscillating
LCR circuit (fig. 1a) be influenced with damped sinusoidal oscillations

U (t) = U [exp( ~ggt ) Sin( @pyeet + @ )] ¥ A( 1)

Then the complex resistance of circuit on complessoaiated influence
frequenciesp =o + ja Wwill be equal to

2,0F 4 4
Z(p): L P pL i LC _ L p2+ P20y, +ab2 _ L(p_ pfreel)(p_ pfreeZ)
p p p
or
2(0.a) =1L (0210 +200(0 % j)+ ap”

ot jw
Reactive constituent of this complex resistance

02 - 02 )+ (67 - ar?)
o’ +af

on complex associated influence frequencieso+ ja& equal to complex
associated frequencigs 1 o = —0p * Wy Of free oscillations (21), possesses

ImZ(p): ImZ(a,a))ziaL
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zero value, &. liml mZ(p)IO12 - bt =0 due to which the forced constituent

of response, which in the given case is represebyedurrent flowing through
LCR circuit, and current coincide in phase.

Complex resistance module of this LCR circuit

|Z(p){ :|Z(a,w)‘ = L\/ (wz _wfreez)_ (0;20_?2‘2)2' +4a)2(0'+ 00)2

On complex associated frequenCi@gee; » = —0p + jwye Of free oscillations

(21) also possesses zero vaI'ue|Z(po Dtreet 2 =0, as a result of which the
- reel,

amplitude of forced constituent of response possesdinitely large values.

Therefore, the first and the second definitive prtips of resonance are available
in the same complex frequencies.

The same results are shown by study of other eddd@iR circuits.

Consequently, the theory of resonance in electt@RLcircuits on complex
frequencies, unlike its interpretation on real treqcies, is consistent.

4  Physcal Meaning of Resonance on Complex
Frequencies

The resonance on complex frequencies have beem \dghl in writings both
without regard to the physical content [3], andassociation with some data
explaining its physical meaning [4-11]. Thoughfasas the issue of physical nature
of resonance on complex frequencies remains unwegsat is expedient to study its
further.

Let's give a description of a series of simple expents proving the fact that
resonance exists exactly on complex frequenciestti® purpose let’'s consider
the processes in LC two pole circuit (fig. 3a) &ldtwo pole circuit (fig. 3b).

As is clear, in accordance with known frequencyrati@ristics of LC two pole
circuit, the poles of forced constituents of outpudltage U,yuroc ON the

frequencies of input voltage > &y and w< a}, have the opposite signs.

Similarly, in accordance with frequency characte$sof RL - two pole circuit of
forced constituents of output voltagk, .. On complex frequencies of input

exponential voltageog >0, and og<og, also have the opposite signs.
Consequently, the resonance is also available @gponential influence in the
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studies electric circuit.

Such result from the point of view of the spectaalysis on real frequencies is
far not obvious, since in the studied RL two patelwit each spectral constituent is
shifted in phase for no more than 90°.

(Jinp

Ulnp

0=0, 0i<0<(
t

0 <0,
Uour,,.
Twck 0
0 <0,
a b

Fig. 3: Resonance in LC- and RL- two-pole circuits

That's why the achieved result encourages moreileétaconsideration of
resonance on complex frequencpgss = +jay in LC two pole circuit (fig. 4a), on

the complex frequency,. = —gy In RL two pole circuit (fig. 4b) and on complex
frequenciesp,o = —0p * jag in LCR two pole circuit (fig. 4c).

As is clear, in all cases the forced constituerduiput voltage at studied two pole
circuits U g 41orc POSSESSES ZEro value upon non-zero values of fooedituent of
voltage on separate mapped elements of these tlgocpouits. That's why upon
resonance the output voltage at these two poleuitsrccontains only free
constituentd , ,ee -

The aforesaid allows explaining why resonance upote has been studied mainly
for the case of pure influence. As is clear frog fia, 4b, 4c, it is caused by the fact
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that upon pure influence with steady line circwtsly the excretion of forced
continuous oscillations out of their sum with fdgemped oscillations with time

l]inp

3 Uput |
A l]inp l]inp ljinp
VAV v ‘ a .
A L ‘forc UCﬁ)rc 0U7j/brc L ‘forc Rﬁ)rc UOUT_ forc UL ‘forc UR f;),‘L»UCfi)J'LUOUijorc
Uour = Uour,,, Uour = Uour,,, X Uour =Uour,,,
A I
d%-_——by t ‘ > [ v‘-— > f

a b c
Fig. 4: Resonance in LC-, RL- and LCR-two-pole circuits
passing by is self-forced. In other cases the @xget becomes more difficult,
because for excretion of forced constituent of eesp it is required to assume

specificmeasures: select the respective parameters ofutlied circuit, introduce
non-zero initial values etc.

5 Conclusions

On the basis of the aforesaid it is possible torctaat:

. resonance as a physical phenomenon does take placeomplex
frequencies;
. complex frequencies are physical reality as bothl @nd imaginary

components influence a resonance similarly;
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complex resistance and complex conductivity asr thalue depends on
complex frequency are physically real;

also any other complex numbers as the resonanses exit only in electric
circuits are physically real.
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