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Abstract

In this paper we prove some fixed point theorems for mappings satisfying
expansive conditions in cone rectangular metric spaces.
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1 Introduction

L.G. Huang and X. Zhang in [6]introduced cone metric spaces. Later, Reza-
pour and Hamlbrani [10] proved results in [6] removing the condition of nor-
mality of the underlying cone.

Following A.Branciari[4],cone rectangular metric spaces were introduced
by A.Azam,M.Arshad and I.Beg [1]in which they replaced the triangular in-
equality in a metric by the rectangular inequality.Further Kannan’s fixed point
theorem,Reich type contraction and more results were proved in [5],[7],[8] and
[11]for these spaces.

Many authors,[3],[12],[13],[14] have obtained coincidence point and fixed
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point results for mappings satisfying expansive type conditions in cone metric
spaces. We extend those results to the cone rectangular metric space.

2 Preliminaries

Definition 2.1 [6] Let E be a real Banach space and P a subset of E.P is
called a cone if and only if:

(i) P is closed, nonempty,and P 6= {θ}.

(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P .

(iii) x ∈ Pand− x ∈ P ⇒ x = θ.

Given a cone P ⊂ E we define a partial ordering ≤ with respect to P by:
x ≤ y ⇔ y − x ∈ P

We shall write x < y to indicate that x ≤ y but x 6= y, while x� y will stand
for y − x ∈ intP ,int P denotes the interior of P .

The cone P is called normal if there is a number k > 0 such that for all
x, y ∈ E,

θ ≤ x ≤ y ⇒ ‖x‖ ≤ k ‖y‖
where‖.‖ is the norm in E.Here number k is called the normal constant of P .

In the following we always suppose that E is a Banach space,P is a solid
cone in E with intP 6= φ and ≤ is partial ordering with respect to P .

Definition 2.2 [1] Let X be a nonempty set.If the mapping ρ : X×X → E
satisfies:

(a) θ < ρ(x, y) for all x, y ∈ X, x 6= y and ρ(x, y) = θ if and only if x = y.

(b) ρ(x, y) = ρ(y, x) for all x, y ∈ X.

(c) ρ(x, y) ≤ ρ(x, z) + ρ(z, y), for all x, y, z ∈ X

Then (X, ρ) is a cone metric space.

The following remark will be useful in proving the results which follow:

Remark 2.3 [9] Let P be a cone in a real Banach space E and let a, b, c ∈
P , then,
(a)If a ≤ b and b� c, then a� c.
(b)If a� b and b� c,then a� c.
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(c)If θ ≤ u� c, for each c ∈ P 0, then u = θ
(d)If c ∈ P 0 and an → θ,then there exists,n0 ∈ N such that for all n > n0, we
have an � c.
(e)If θ ≤ an ≤ bn, for each n and an → a, bn → b, then a ≤ b.
(f)If a ≤ λa, where 0 < λ < 1, then a = θ.

The concept of cone metric spaces is more general than that of metric spaces
since each metric space is a cone metric space with E = R and P = [0,+∞).

Definition 2.4 [1] Let X be a nonempty set.If the mapping d : X×X → E
satisfies:

(a) θ < d(x, y) for all x, y ∈ X, x 6= y and d(x, y) = θ if and only if x = y.

(b) d(x, y) = d(y, x) for all x, y ∈ X.

(c) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all x, y ∈ X and for all distinct
points u, v ∈ X \ {x, y} { rectangular property }.

Here d is called a cone rectangular metric on X, and (X, d)is called a cone
rectangular metric space.

Example 2.5 [7] Let X = R, E = R2 and P = {(x, y) : x, y ≥ 0}
Define d : X ×X → E as follows:

d(x, y) =


(0, 0) if x = y;

(3a, 3) if x and y are both in {1, 2}, x 6= y;

(a, 1) if x and y are not both at a time in {1, 2}, x 6= y

where a > 0 is a constant.Then (X, d) is a cone rectangular metric space.
But it is not a cone metric space since d(1, 2) = (3a, 3) > d(1, 3) + d(3, 2) =
(2a, 2),the triangle inequality does not hold true.

Example 2.6 [9] Let X = N, E = C1
R[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ and

P = {x ∈ E : x(t) ≥ 0}for t ∈ [0, 1].Then this cone is not normal.
Define d : X ×X → E as follows:

d(x, y) =


0, if x = y;

3et if x and y are both in {1, 2}, x 6= y;

et if x and y are not both at a time in {1, 2}, x 6= y

Then (X, d) is a cone rectangular metric space but it is not a cone metric space
as it does not satisfy the triangular property.
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Definition 2.7 [7]Let (X, d) be a cone rectangular metric space.Let {xn}be
a sequence in X and x ∈ X. If for every c ∈ E, c� θ there is N such that for
all n > N, d(xn, x) � c, then {xn} is said to be convergent to x and x is the
limit of {xn}.This is denoted be xn → x as n→ +∞.

Definition 2.8 [7]Let (X, d) be a cone rectangular metric space,{xn} be a
sequence in X.If for any c ∈ X with θ � c, there is N such that for all
n,m > N, d(xn, xm)� c, then {xn} is called a Cauchy sequence in X.

Definition 2.9 [7] Let (X, d) be a cone rectangular metric space.If every
Cauchy sequence is convergent in X ,then X is called a complete cone rectan-
gular metric space.

Definition 2.10 Let (X, d) be a cone rectangular metric space.A mapping
T : X → X is called expansive if there exists a real constant k > 1 such that

d(Tx, Ty) ≥ kd(x, y)

for all x, y ∈ X.

Definition 2.11 [2] Let f and g be two self maps of a nonempty set X.If
fx = gx = y for some x ∈ X,then x is called the coincidence point of f and g
and y is called the point of coincidence of f and g.

Definition 2.12 Two self mappings f and g are said to be weakly compat-
ible if they commute at their coincidence points,that is fx = gx implies that
fgx = gfx.

Proposition 2.13 [2] If f and g are weakly compatible self maps of a
nonempty set X such that they have a unique point of coincidence i.e.fx =
gx = y,then y is the unique common fixed point of f and g.

Now, we state our main results.

3 Main Results

Theorem 3.1 Let (X, d) be a cone rectangular metric space and let f, g :
X → X be mappings which satisfy,

d(fx, fy) ≥ αd(gx, gy) + βd(fx, gx) + γd(fy, gy) (1)

for all x, y ∈ X,where α, β and γ are nonnegative real numbers with
α + β + γ > 1, β < 1, γ < 1,and α > 1.If g(X) ⊆ f(X) and either of f(X)
or g(X) is complete,then f and g have a unique point of coincidence in X.If
f and g are weakly compatible then they have a unique common fixed point in
X.
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Proof: Let x0 ∈ X ,since g(X) ⊆ f(X), we can choose x1 ∈ X such that
gx0 = fx1.Continuing this process we construct a sequence {xn} in X such
that fxn = gxn−1, for all n ≥ 1.
If gxn−1 = gxn for some n ≥ 1,then fxn = gxn and xn is a coincidence point
of f and g.
Hence assume that xn−1 6= xn for all n ≥ 1.
By equation (1), we have

d(gxn−1, gxn) = d(fxn, fxn+1)

≥ αd(gxn, gxn+1) + βd(fxn, gxn) + γd(fxn+1, gxn+1)

≥ αd(gxn, gxn+1) + βd(gxn−1, gxn) + γd(gxn, gxn+1)

i.e.

d(gxn, gxn+1) ≤
1− β
α + γ

d(gxn−1, gxn)

Hence,

d(gxn, gxn+1) ≤ λd(gxn−1, gxn)

where λ = 1−β
α+γ
∈ (0, 1).

By induction we get,

d(gxn, gxn+1) ≤ λnd(gx0, gx1) (2)

for all n ≥ 0.
Consider,

d(gxn−1, gxn+1) = d(fxn, fxn+2)

≥ αd(gxn, gxn+2) + βd(fxn, gxn) + γd(fxn+2, gxn+2)

≥ αd(gxn, gxn+2) + βd(gxn−1, gxn) + γd(gxn+1, gxn+2)

Therefore,

αd(gxn, gxn+2) ≤ d(gxn−1, gxn+1)− βd(gxn−1, gxn)− γd(gxn+1, gxn+2)

≤ d(gxn−1, gxn) + d(gxn, gxn+2) + d(gxn+2, gxn+1)

− βd(gxn−1, gxn)− γd(gxn+1, gxn+2)

Hence,

d(gxn, gxn+2) ≤
1− β
α− 1

d(gxn−1, gxn) +
1− γ
α− 1

d(gxn+1, gxn+2)



Fixed Point Theorems for Expansion Mappings... 35

i.e.

d(gxn, gxn+2) ≤ a1d(gxn−1, gxn) + a2d(gxn+1, gxn+2) (3)

where a1 = 1−β
α−1 > 0, a2 = 1−γ

α−1 > 0
For the sequence {gxn}, we consider d(gxn, gxn+p) in two cases,p is even and
p is odd.
Suppose p is even,let p = 2m,m ≥ 2,then by (2),(3) and the rectangular
inequality, we have,

d(gxn, gxn+2m) ≤ d(gxn, gxn+2) + d(gxn+2, gxn+3) + ...+ d(gxn+2m−1, gxn+2m)

≤ a1d(gxn−1, gxn) + a2d(gxn+1, gxn+2) + d(gxn+2, gxn+3)+

...+ d(gxn+2m−1, gxn+2m)

≤ a1λ
n−1d(gx0, gx1) + a2λ

n+1d(gx0, gx1) + λn+2d(gx0, gx1)+

...+ λn+2m−1d(gx0, gx1)

≤ a1λ
n−1d(gxn−1, gxn) + a2λ

n+1d(gxn+1, gxn+2) +
λn+2

1− λ
d(gx0, gx1)

Suppose p is odd,let p = 2m + 1,m ≥ 1,then by (2) and the rectangular
inequality, we have,

d(gxn, gxn+2m+1) ≤ d(gxn, gxn+1) + d(gxn+1, gxn+2) + ...+ d(gxn+2m, gxn+2m+1)

≤ λnd(gx0, gx1) + λn+1d(gx0, gx1) + ...+ λn+2md(gx0, gx1)

≤ λn

1− λ
d(gx0, gx1)

As a1, a2 > 0 and λ ∈ (0, 1),a1λ
n−1d(gx0, gx1)→ θ,a2λ

n+1d(gx0, gx1)→ θ,
λn+2

1−λ d(gx0, gx1)→ θ, λ
n

1−λd(gx0, gx1)→ θ as n→∞,so by(a) and (d)of Remark
(2.3),for every c ∈ E with θ � c, there exits n0 ∈ N such that d(gxn, gxn+p)�
c for all n > n0.

Hence, {gxn} is a Cauchy sequence.Suppose g(X) is a complete subspace
of X, there exists y ∈ g(X) ⊆ f(X) such that gxn → y and also fxn → y,
and if f(X) is complete, this holds also with y ∈ f(X).

Let u ∈ X,be such that fu = y.For θ � c, we can choose a natural number
n0 ∈ N,such that d(y, gxn−1)� c

3
,d(gxn−1, gxn)� c

3
and d(fxn, fu)� αc

3
for

all n > n0

We have by (1),

d(gxn−1, fu) = d(fxn, fu)

≥ αd(gxn, gu) + βd(fxn, gxn) + γd(fu, gu)

≥ αd(gxn, gu)
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i.e.

d(gxn, gu) ≤ 1

α
d(gxn−1, fu)

By the rectangular inequality,

d(y, gu) ≤ d(y, gxn−1) + d(gxn−1, gxn) + d(gxn, gu)

≤ d(y, gxn−1) + d(gxn−1, gxn) +
1

α
d(gxn−1, fu)

≤ d(y, gxn−1) + d(gxn−1, gxn) +
1

α
d(fxn, fu)

Thus,

d(y, gu)� c

3
+
c

3
+
c

3
= c

for all n > n0 and gu = y,hence fu = gu = y, which means that y is a
coincidence point of f and g.
Suppose there exists another point of coincidence y∗, such that gu∗ = fu∗ = y∗

for some u∗ ∈ X. Then,

d(y, y∗) = d(fu, fu∗)

≥ αd(gu, gu∗) + βd(fu, gu) + γd(fu∗, gu∗)

≥ αd(y, y∗) + βd(y, y) + γd(y∗, y∗)

Hence,

d(y, y∗) ≤ 1

α
d(y, y∗)

Since α > 1, we have by Remark(2.3)(f),d(y, y∗) = θ i,e,y = y∗.Therefore f and
g have a unique point of coincidence in X.If f and g are weakly compatible,
then by Proposition (2.13), f and g have a unique common fixed point in
X. �

Corollary 3.2 Let (X, d) be a complete cone rectangular metric space and
let f, g : X → X be mappings which satisfy,

d(fx, fy) ≥ αd(gx, gy) (4)

for all x, y ∈ X,where α > 1 is a constant.If g(X) ⊆ f(X) and either of f(X)
or g(X) is complete,then f and g have a unique point of coincidence in X.If
f and g are weakly compatible then they have a unique common fixed point in
X.
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Proof:Taking β = γ = 0 in Thm.(3.1), we get the result. �

Example 3.3 Let X = {1, 2, 3, 4}, E = R2 and P = {(x, y) : x, y ∈ X} be
a cone in E.
Define d : X ×X → E as follows:
d(1, 2) = d(2, 1) = (3, 6)
d(2, 3) = d(3, 2) = d(1, 3) = d(3, 1) = (1, 2)
d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) = (2, 4)
then (X, d) is a cone rectangular metric space but not a cone metric space be-
cause it lacks the triangular property as
(3, 6) = d(1, 2) > d(1, 3) + d(3, 2) = (1, 2) + (1, 2) = (2, 4)
since (3, 6)− (2, 4) = (1, 2) ∈ P.
Now define mappings f, g : X → X as follows:

fx = x for all x ∈ X.

g(x) =

{
3 if x 6= 4;

1 if x = 4;

All conditions of Thm.(3.1) hold for α ∈ (1, 2], β = 0 and γ = 0,3 ∈ X is the
unique common fixed point of f and g. �

Corollary 3.4 Let (X, d) be a complete cone rectangular metric space and
let f : X → X be onto mapping which satisfies,

d(fx, fy) ≥ αd(x, y) + βd(fx, x) + γd(fy, y) (5)

for all x, y ∈ X,where α, β and γ are nonnegative real numbers with
α + β + γ > 1, β < 1, γ < 1,and α > 1.Then f has a unique fixed point in X.

Proof:It follows by taking g = I in Thm.(3.1). �

Corollary 3.5 Let (X, d) be a complete cone rectangular metric space and
let f : X → X be onto mapping which satisfies,

d(fx, fy) ≥ αd(x, y) (6)

for all x, y ∈ X,where α > 1 is a constant.Then f has a unique fixed point in
X.

Proof:It follows by taking g = I and β = γ = 0 in Thm.(3.1). �
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