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Abstract

In this paper, we introduce the spaces loo(AY), c(AY) and co(AY), which
are BK -spaces of non-absolute type and we prove that these spaces are linearly
isomorphic to the spaces {o, ¢ and cgy, respectively. Moreover, we give some
inclusion relations and compute the a—, f— and y—duals of these spaces. We
also determine the Schauder basis of the c(AY') and co(AY).
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1 Introduction

A sequence space is defined to be a linear space of real or complex sequences.
Let w denote the spaces of all complex sequences. If x € w, then we simply
write x = () instead of x = (x),—,-

Let X be a sequence space. If X is a Banach space and

T X =0 mp(x)=a, (k=1,2,..)

is a continuous for all k£, X is called a BK —space.

We shall write ¢, ¢ and ¢y for the sequence spaces of all bounded, con-
vergent and null sequences, respectively, which are BK —spaces with the norm
given by |lz|| = sup, |z for all & € N.
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For a sequence space X, the matrix domain X4 of an infinite matrix A
defined by
Xo={r=(2y) ew: Az € X} (1)

which is a sequence space.

We shall denote the collection of all finite subsets of N by F.

M. Mursaleen and A. K. Noman [9] introduced the sequence spaces £, ¢
and ¢ as the sets of all A\ — bounded, A\ — convergent and X\ — null sequences,
respectively, that is

A

0 = {xcw:sup |A,(7)] < o0}
& = {zew: lim A, (z) exists}
g = {rcw: lim A, (z) =0}

n

where A, (z) = i > (A — Ae—1) m, k€N

M. Mursaleen and A. K. Noman [10] also introduced the sequence spaces
 (A) and ¢ (A), respectively, that is
AMA)={zcw: lim A, (z) exists}
g (A)={zcw: lim A, (x) = 0}.

n

where /_\n( ) )\n kX—:O ()\k — >\k 1) (IL‘k — l‘k_l), k € N.
H. Ganie and N. A. Sheikh [2] introduced the spaces co(A2) and c(A)) as

follows:
c(A)) = {recw: lim An(z) = 0}
(A = {zcw: lim A () exists}

where //in(l’) = ﬁ ZZ:O(/\]C — )\k_l)uk(xk — xk—l), k € N.

2 The Sequence Spaces /(AY') , ¢(AV) and ¢y(AY)
of Non-Absolute Type

We define the sequence spaces (oo (AY) , c(AY) and ¢o(AY") as follows;
an(25) = { }
(AT = {x €w: lim An( emsts}

()] < oo

co(AY) = {x €w: lim An( 0}
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where An(x) = ﬁ Sr—o( Ak — Ak—1)A™xg, k,m € N. A denotes the difference
m

operator. i.e., A%z, =z, Az = xp—x5_1 and A™xy, =37 (—1)" S E

A = ()22, is a strictly increasing sequence of positive reals tending to infinity,
that is 0 < Mg < Ay < ... and A\, — o0 as k — oc.

Here and in sequel, we use the convention that any term with a negative
subscript is equal to naught. e.g. A_y =0 and x_; = 0.

If we take m = 1 sequence spaces which we defined reduces to /2 (A), c*(A)
and ¢} (A).

We define the matrix A = (Xnk) for all n,k € N by

) n m yi—k A=A
Ank = zzk<2—k‘>( b An 7 kén.
0, n <k

A= (5\”;0 equality can be eaisly seen from

1

for all m,n € N and every x = (x;) € w. Then it leads us together with (1)
to the fact that

loo (AY') = (loo)i 5 €0 (AY') = (co), ¢(AY) = (c)i-

The matrix A = (Xnk) is a triangle, i.e., Xon # 0 and p—) (k > n) for
all n,k € N. Further, for any sequence x = (z;,) we define the sequence
y (A) = {yx (\)} as the A-transform of z, i.e., y (A\) = A(x) and so we have that

=330 (1) (A ®)

k

for £ € N. Here and in what follows, the summation running from 0 to k¥ — 1
is equal to zero when k = 0.

Theorem 2.1 (o (AY), co(AY) and ¢(AY') are BK-spaces with the norm
el ey, = [Bn(@)]| = sup [An(@)]. (4)

Proof: We know that ¢ and ¢ are BK —spaces with their natural norms
from [5]. (3) holds and A = ()\nk) is a triangle matrix and from Theorem 4.3.12

of Wilansky [1], we derive that (o (AY), ¢o (AY) and ¢ (AY") are BK —spaces.
This completes the proof.
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Remark 2.2 The absolute property does not hold on the €+ (AY), co(AY) and
c(AY') spaces. For instance, if we take |x| = (|zx|) we hold ||z, ) 7

|||$|||(éoo);\ .Thus, the space lo(AY), co(AY) and c(AY') are BK-space of non-
absolute type.

Theorem 2.3 The sequence spaces loo(AY), co(AY) and c(AY) of non-
absolute type are linearly isomorphic to the spaces Ly, co and c, respectively,

that is Uoo(AY) = Ly , co(AY) = ¢o and c(AY) = c.

Proof: We only consider ¢o(AY') = ¢y and others will prove similarly.
To prove the theorem we must show the existence of linear bijection operator
between cy(AY') and ¢q. Hence, let define the linear operator with the notation
(3), from ¢o(AY") and ¢y by x — y (A) = T'z.

Then Tz = y(\) = A(x) € ¢ for every = € co(AY). Also, the linearity
of T is clear. Further, it is trivial that x = 0 whenever Tx = 0. Hence T is
injective.

Let y = (yx) € co and define the sequence x = {x (A)} by

A =X ("I Y e ©

and we have

i=k—1

Thus, for every k& € N, we have by (2) that

_ !
An

n k —i 1 2
= Z Z (—1)k )\,yz = )\7 Z ()\kyk - )\k—lyk—l) = Yn (7)
=k " k=0

k=0i=k—1

This shows that A(x) = y and since y € ¢y, we obtain that A(z) € ¢,. Thus we
deduce that z € ¢y (AY) and Tx = y. Hence T is surjective.
Further, we have for every = € ¢q (A}") that

1720, = 1Tl = lly W, =[JA@)] = Il (8)

(o) x

which means that ¢ (AY') and ¢ is linearly isomorphic.

3 The Inclusion Relations

Theorem 3.1 The inclusion co (AY) C ¢ (AY) strictly holds.
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Proof: It is clear that ¢y (AY) C ¢(AY). To show strict, consider the
sequence x = () defined by x, = k™ for all k € N. Then we obtain that

1

for n € N which shows that A(z) € ¢ — ¢. Thus, the sequence z is in ¢ (A})
but not in ¢y (AY"). Hence the inclusion ¢o (AY) C ¢ (AY) is strict and this
completes the proof.

Theorem 3.2 The inclusion ¢ C co(AY) strictly holds.

Proof: Let = € ¢. Then A(z) € ¢o. This shows that z € ¢ (A}). Hence,
the inclusion ¢ C ¢y (AY") holds. Then, consider the sequence y = (yx) defined
by yx = vk + 1 for k € N. It is trivial that y ¢ ¢. On the other hand, it can
easily be seen that A(y) € ¢y and y € ¢, (A}) .Consequently, the sequence ¥ is
in ¢o (AY") but not in ¢. We therefore deduce that the inclusion ¢ C ¢y (AY") is
strict. This concludes proof.

Theorem 3.3 The inclusion ¢ (AT‘l) C ¢ (AY") holds.

Proof: Let z € ¢ (AT‘I). Then we have
1 n

Furthermore, we obtain that = € ¢(AY) from the following inequality,
hence the inclusion ¢ (AT’l) C ¢ (AY") holds.

‘ﬁzzzo( — Nem1) A™ $k’<‘ S (Mg — Agoq) A™E k_l‘ (1)
+‘ Zk o(Ak_)\k 1)Am Th— 1—[‘—)0

Theorem 3.4 The inclusion {o(AY ™) C Lo (AT) strictly holds.

Proof: Let x € (o (AY™1). Then we have

I & m—1

YZ()\k_)\kfl)A T

n k=0

An(w)| = <K (12)

for K > 0. We obtain the following equality that z € ¢,,(A%"), hence the
inclusion /o, (AY™!) C €5 (AT) holds.

n

1
— Z()\k — )\k_l)Am_l.Ik

n k=0

1
- Z()\k — )\k_l)AmZL’k S +

/\” k=0

An (1 o
(13)
To show strict, we consider x = (x}) defined by x = (k™), then we obtain

2 € Uoo(AT) — Lo (AT,

1 n
~ Z()\k — M)A gy
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4 The Bases for the Spaces ¢(AY) and ¢y (AY)

If a normed sequence space X contains a sequence (b,) with the property that
for every x € X there is a unique sequence (a,) of scalars such that

Then (b,,) is called a Schauder basis (or briefly basis) for X. The series Y ayby
which has the sum z is then called the expansion of x with respect to (b,) ,
and written as x = Y a;by.

i

Theorem 4.1 Define the sequence b¥) (X, m) = {bT(f) ()\,m)}:i() for every
fixed k,m € N and by

m+n—k—1 m+n—k—2
( >>\)\>}f _< )/\’\k/\,n>k
n—k k—Ak—1 n—k—1 k+1—Ak

(k) -
bn ()\,m) )\ki)\fkil, n—Fk- (15)
0, n<k

Then, the sequence {b,(f) (A, m)}oo is a basis for the space ¢y (AY") and every

z € ¢o (A7) has a unique representation of the form

T = Z ag () k) (A, m) (16)

where ay, () = Ay, (z) for all k € N.

Theorem 4.2 The sequence {b, bO (X, m), b (X, m), } is a basis for the
space ¢ (AY') and every x € ¢ (AY) has a unique representation of the form

r=0+Y [ar(N) =16 (A, m); (17)
k

where oy, (\) = Ay, (z) for all k € N, the sequence b= (by,) is defined by

bszj<m+:__;_1>. (18)

J=0

Corollary 4.3 The difference sequence spaces ¢ (AY") and co (AY') are seper-
able.
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5 The a—, — and y—Duals of the Spaces ¢ (AY")
and ¢ (AY)

In this section, we introduce and prove the theorems determining the a—, f—
and y— duals of the difference sequence spaces ¢ (AY') and ¢y (AY) of non-
absolute type.

For arbitrary sequence spaces X and Y ;the set M (X,Y’) defined by

M(X,)Y)={a=(ax) € w:ax = (agzg) €Y forall z = (zx) € X} (19)

is called the multipier space of X and Y.
With the notation of (19); the a—, 3— and y—duals of a sequence space
X, which are respectively denoted by X<, X? and X7 are defined by

X% =M (X, 0),X? =M (X,cs) and X7 = M (X,bs). (20)
Now, we may begin with lemmas which are needed in proving theorems.

Lemma 5.1 A€ (¢ :01) = (c: t) if and only if

sup 3|3 e

KeF pn keK

< 0. (21)

Lemma 5.2 A € (¢q : ¢) if and only if

lirrln anr exists for each k € N, (22)
sup Y _ |ans| < oc. (23)
"ok

Lemma 5.3 A € (c:c) if and only if (22) and (23) hold, and

lim > ank exists. (24)
k

Lemma 5.4 A € (¢y: ls) = (¢ : Ly) if and only if (23) holds.
Lemma 5.5 A € ({y : ¢) if and only if (22) holds and

lim 3 o] = 3 o (2)
k k

Theorem 5.6 The a—dual of the space co (AY') and c (AY") is the set

Z bnk ()\, m)

by =<a=(ay) Ew:sup Y
keK

KeF 5

< oo} ; (26)

where the matriz B» = (b;\l?) is defined via the sequence a = (ay) by
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m+n—k—1 m4+n—k—2
n—k E—Ak—1 n—k—1 k+1—Ak

(k) _
by (A, m) - )\;\Ln_l . el
0, n <k
(27)

Proof: Let a = (ax) € w. Then, we obtain the equality

i mTn—k— k —7 )\
ak:pkzz< e 1) > () ey = B)(y). (neN).
k=0 j=k—1 k k-1 (28)
28

Thus, we observe by (28) that ax = (arxy) € ¢1 whenever x = () € ¢y (AY)
or ¢ (A1) if and only if By € ¢; whenever y = (yz) € ¢ or ¢. This means that
the the sequence a = (ay) is in the a—dual of the spaces ¢y (AY") or ¢ (AY) if
and only if B* € (cy: £1) = (c: £1). We therefore obtain by Lemma 5.1 with
B* instead of A that a € {co (A7)} = {c (A7)} if and only if

sup Z ank(/\,m) < 00

KeF p keK

(29)

Which leads us to the consequence that {co (A7)}* = {c(AT)}* = b}. This
concludes proof.

Theorem 5.7 Define the sets

i=k "

by = {a = (a) Ew: ) ( m+n_7_1 ) aj exists for each k € N.} (30)

n—1
bgz{a—(ak)ew sup > |gi (n |<OO} (31)
nGNk 0

A

biz{a_( )Gw Sup)\—ig\nl

neN

<oo.} (32)
bg:{a_(ak cw: Jgngozz<m+k_j_l>akexists.} (33)

k=0 j=0 J
s 2| (34)

lim ¢
n—

bé\:{a:(ak)Ew:nli_)HgoZ‘tQk‘:Z
k k

where the matrice T = (t;\lk) is defined as follow:

ax (n) k<n
tﬁk = An:\;n,lan7 k=n (35)
0, k>n
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for all k,n € N and the a; (n) is defined by

1 [ mtj—k—1 1 o
| T :
@) ' ()\k — Mp_1 Z ( j—k > “ Akl — Ak Z ( k-1 > &]) "

for k < n. Then {co (AT} =3 N3 NB}, {c(AT)Y =) Nnbd N} N B and
{loo (AT =) N DY N 1Y,

Proof: We have from (5)

n n J
mAk—j—1 - A
Zakxk - Z [Z( k?; ) Z (—1)’ Hyz] ag
k=0 k=0 |j=0 i=j—1 J j—1
. i < m—l—?—k—l a; i ( m—ll-j—k—Z > a
_ Z AL j=k i~k _j=kt1 j—k—1 e + G\,
k=0 >‘k - /\k—l /\k+1 - )\k /\n - )\n—l
n—1 an)\n \
= 2 a(m)y+ 51— yo = (T*y) ;(neN).
k=0 n — \n—-1

Then we derive that ax = (agxy) € cs whenever x = (xy) € ¢o (AY) if and only
if Ty € ¢ whenever y = (y;) € ¢o. This means that a = (a;) € {co (A7)} if
and only if T* € (¢p : ¢). Therefore, by using Lemma 5.2, we obtain

Z ( . _jj -1 > a; exists for each k € N, (37)
sup Z lag (n)| < oo (38)
neN k=0
and )
— A
su — ] < . 39
reN kz% Moo= Neet (39)

Hence we conclude that {c, (A7)} = b3 N b3 N},
Theorem 5.8 {co (A7)} = {c (AT} = {lo (A7)} = b3 N b).

Proof: It can be proved similalry as the proof of the Theorem 5.7 with
Lemma 5.4 instead of Lemma 5.2.
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