
Gen. Math. Notes, Vol. 27, No. 2, April 2015, pp.37-46
ISSN 2219-7184; Copyright c©ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

Some Generalized Difference

Sequence Spaces of Non-Absolute Type

Sinan Ercan1 and Çiğdem A. Bektaş2
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Abstract
In this paper, we introduce the spaces `∞(∆m

λ ), c(∆m
λ ) and c0(∆m

λ ), which
are BK-spaces of non-absolute type and we prove that these spaces are linearly
isomorphic to the spaces `∞, c and c0, respectively. Moreover, we give some
inclusion relations and compute the α−, β− and γ−duals of these spaces. We
also determine the Schauder basis of the c(∆m

λ ) and c0(∆m
λ ).

Keywords: Sequence spaces of non-absolute type, BK-spaces, Difference
Sequence Spaces.

1 Introduction

A sequence space is defined to be a linear space of real or complex sequences.
Let w denote the spaces of all complex sequences. If x ∈ w, then we simply
write x = (xk) instead of x = (xk)

∞
k=0.

Let X be a sequence space. If X is a Banach space and

τk : X → C, τk (x) = xk (k = 1, 2, ...)

is a continuous for all k, X is called a BK−space.
We shall write `∞, c and c0 for the sequence spaces of all bounded, con-

vergent and null sequences, respectively, which are BK−spaces with the norm
given by ‖x‖∞ = supk |xk| for all k ∈ N.
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For a sequence space X, the matrix domain XA of an infinite matrix A
defined by

XA = {x = (xk) ∈ w : Ax ∈ X} (1)

which is a sequence space.
We shall denote the collection of all finite subsets of N by F .
M. Mursaleen and A. K. Noman [9] introduced the sequence spaces `λ∞, c

λ

and cλ0 as the sets of all λ− bounded, λ− convergent and λ− null sequences,
respectively, that is

`λ∞ = {x ∈ w : sup
n
|Λn(x)| <∞}

cλ = {x ∈ w : lim
n→∞

Λn(x) exists}

cλ0 = {x ∈ w : lim
n→∞

Λn(x) = 0}

where Λn (x) = 1
λn

n∑
k=0

(λk − λk−1)xk, k ∈ N.

M. Mursaleen and A. K. Noman [10] also introduced the sequence spaces
cλ (∆) and cλ0 (∆), respectively, that is

cλ (∆) = {x ∈ w : lim
n→∞

Λ̄n(x) exists}

cλ0 (∆) = {x ∈ w : lim
n→∞

Λ̄n(x) = 0}.

where Λ̄n (x) = 1
λn

n∑
k=0

(λk − λk−1) (xk − xk−1), k ∈ N.

H. Ganie and N. A. Sheikh [2] introduced the spaces c0(∆λ
u) and c(∆λ

u) as
follows:

c0(∆λ
u) = {x ∈ w : lim

n→∞
Λ̂n(x) = 0}

c(∆λ
u) = {x ∈ w : lim

n→∞
Λ̂n(x) exists}

where Λ̂n(x) = 1
λn

∑n
k=0(λk − λk−1)uk(xk − xk−1), k ∈ N.

2 The Sequence Spaces `∞(∆m
λ ) , c(∆m

λ ) and c0(∆m
λ )

of Non-Absolute Type

We define the sequence spaces `∞(∆m
λ ) , c(∆m

λ ) and c0(∆m
λ ) as follows;

`∞(∆m
λ ) =

{
x ∈ w : sup

n

∣∣∣Λ̃n(x)
∣∣∣ <∞}

c(∆m
λ ) =

{
x ∈ w : lim

n→∞
Λ̃n(x) exists

}
c0(∆m

λ ) =
{
x ∈ w : lim

n→∞
Λ̃n(x) = 0

}
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where Λ̃n(x) = 1
λn

∑n
k=0(λk − λk−1)∆mxk, k,m ∈ N. ∆ denotes the difference

operator. i.e., ∆0xk = xk, ∆xk = xk−xk−1 and ∆mxk =
∑m
v=0 (−1)v

(
m
v

)
xk−v.

λ = (λk)
∞
k=0 is a strictly increasing sequence of positive reals tending to infinity,

that is 0 < λ0 < λ1 < ... and λk →∞ as k →∞.
Here and in sequel, we use the convention that any term with a negative

subscript is equal to naught. e.g. λ−1 = 0 and x−1 = 0.
If we take m = 1 sequence spaces which we defined reduces to `λ∞(∆), cλ(∆)

and cλ0(∆).

We define the matrix Λ̃ =
(
λ̃nk

)
for all n, k ∈ N by

λ̃nk =


n∑
i=k

(
m
i− k

)
(−1)i−k λi−λi−1

λn
, k ≤ n

0, n < k
.

Λ̃ =
(
λ̃nk

)
equality can be eaisly seen from

Λ̃n(x) =
1

λn

n∑
k=0

(λk − λk−1) ∆mxk (2)

for all m,n ∈ N and every x = (xk) ∈ w. Then it leads us together with (1)
to the fact that

`∞ (∆m
λ ) = (`∞)Λ̃ , c0 (∆m

λ ) = (c0)Λ̃ , c (∆m
λ ) = (c)Λ̃ .

The matrix Λ̃ =
(
λ̃nk

)
is a triangle, i.e., λ̃nn 6= 0 and λ̃nk = 0 (k > n) for

all n, k ∈ N. Further, for any sequence x = (xk) we define the sequence
y (λ) = {yk (λ)} as the Λ̃-transform of x, i.e., y (λ) = Λ̃(x) and so we have that

y (λ) =
k∑
j=0

k∑
i=j

(−1)i−j
(

m
i− j

)(
λi − λi−1

λk

)
xj (3)

for k ∈ N. Here and in what follows, the summation running from 0 to k − 1
is equal to zero when k = 0.

Theorem 2.1 `∞(∆m
λ ), c0(∆m

λ ) and c(∆m
λ ) are BK-spaces with the norm

‖x‖(`∞)Λ̃
=
∥∥∥Λ̃n(x)

∥∥∥
∞

= sup
n

∣∣∣Λ̃n(x)
∣∣∣ . (4)

Proof: We know that c and c0 are BK−spaces with their natural norms
from [5]. (3) holds and Λ̃ =

(
λ̃nk

)
is a triangle matrix and from Theorem 4.3.12

of Wilansky [1], we derive that `∞(∆m
λ ), c0 (∆m

λ ) and c (∆m
λ ) are BK−spaces.

This completes the proof.
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Remark 2.2 The absolute property does not hold on the `∞(∆m
λ ), c0(∆m

λ ) and
c(∆m

λ ) spaces. For instance, if we take |x| = (|xk|) we hold ‖x‖(`∞)Λ̃
6=

‖|x|‖(`∞)Λ̃
.Thus, the space `∞(∆m

λ ), c0(∆m
λ ) and c(∆m

λ ) are BK-space of non-

absolute type.

Theorem 2.3 The sequence spaces `∞(∆m
λ ), c0(∆m

λ ) and c(∆m
λ ) of non-

absolute type are linearly isomorphic to the spaces `∞, c0 and c, respectively,
that is `∞(∆m

λ ) ∼= `∞ , c0(∆m
λ ) ∼= c0 and c(∆m

λ ) ∼= c.

Proof: We only consider c0(∆m
λ ) ∼= c0 and others will prove similarly.

To prove the theorem we must show the existence of linear bijection operator
between c0(∆m

λ ) and c0. Hence, let define the linear operator with the notation
(3), from c0(∆m

λ ) and c0 by x→ y (λ) = Tx.
Then Tx = y (λ) = Λ̃ (x) ∈ c0 for every x ∈ c0(∆m

λ ). Also, the linearity
of T is clear. Further, it is trivial that x = 0 whenever Tx = 0. Hence T is
injective.

Let y = (yk) ∈ c0 and define the sequence x = {x (λ)} by

xk (λ) =
k∑
j=0

(
m+ k − j − 1

k − j

) j∑
i=j−1

(−1)j−i
λi

λj − λj−1

yi. (5)

and we have

∆mxk =
k∑

i=k−1

(−1)k−i
λi

λk − λk−1

yi. (6)

Thus, for every k ∈ N, we have by (2) that

Λ̃n(x) =
1

λn

n∑
k=0

k∑
i=k−1

(−1)k−i λiyi =
1

λn

n∑
k=0

(λkyk − λk−1yk−1) = yn (7)

This shows that Λ̃(x) = y and since y ∈ c0, we obtain that Λ̃(x) ∈ c0. Thus we
deduce that x ∈ c0 (∆m

λ ) and Tx = y. Hence T is surjective.
Further, we have for every x ∈ c0 (∆m

λ ) that

‖Tx‖c0 = ‖Tx‖`∞ = ‖y (λ)‖
`∞

=
∥∥∥Λ̃(x)

∥∥∥
`∞

= ‖x‖
(c0)

Λ̃

(8)

which means that c0 (∆m
λ ) and c0 is linearly isomorphic.

3 The Inclusion Relations

Theorem 3.1 The inclusion c0 (∆m
λ ) ⊂ c (∆m

λ ) strictly holds.
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Proof: It is clear that c0 (∆m
λ ) ⊂ c (∆m

λ ) . To show strict, consider the
sequence x = (xk) defined by xk = km for all k ∈ N. Then we obtain that

Λ̃n(x) =
1

λn

n∑
k=0

(λk − λk−1) ∆mxk = m! (9)

for n ∈ N which shows that Λ̃(x) ∈ c− c0. Thus, the sequence x is in c (∆m
λ )

but not in c0 (∆m
λ ) . Hence the inclusion c0 (∆m

λ ) ⊂ c (∆m
λ ) is strict and this

completes the proof.

Theorem 3.2 The inclusion c ⊂ c0(∆m
λ ) strictly holds.

Proof: Let x ∈ c. Then Λ̃(x) ∈ c0. This shows that x ∈ c0 (∆m
λ ) . Hence,

the inclusion c ⊂ c0 (∆m
λ ) holds. Then, consider the sequence y = (yk) defined

by yk =
√
k + 1 for k ∈ N. It is trivial that y /∈ c. On the other hand, it can

easily be seen that Λ̃(y) ∈ c0 and y ∈ c0 (∆m
λ ) .Consequently, the sequence y is

in c0 (∆m
λ ) but not in c. We therefore deduce that the inclusion c ⊂ c0 (∆m

λ ) is
strict. This concludes proof.

Theorem 3.3 The inclusion c
(
∆m−1
λ

)
⊂ c (∆m

λ ) holds.

Proof: Let x ∈ c
(
∆m−1
λ

)
. Then we have

Λ̃n(x) =
1

λn

n∑
k=0

(λk − λk−1) ∆m−1xk → l (k →∞) . (10)

Furthermore, we obtain that x ∈ c (∆m
λ ) from the following inequality,

hence the inclusion c
(
∆m−1
λ

)
⊂ c (∆m

λ ) holds.∣∣∣ 1
λn

∑n
k=0 (λk − λk−1) ∆mxk

∣∣∣ ≤ ∣∣∣ 1
λn

∑n
k=0 (λk − λk−1) ∆m−1xk − l

∣∣∣
+
∣∣∣ 1
λn

∑n
k=0 (λk − λk−1) ∆m−1xk−1 − l

∣∣∣→ 0.
(11)

Theorem 3.4 The inclusion `∞(∆m−1
λ ) ⊂ `∞(∆m

λ ) strictly holds.

Proof: Let x ∈ `∞(∆m−1
λ ). Then we have∣∣∣Λ̃n(x)

∣∣∣ =

∣∣∣∣∣ 1

λn

n∑
k=0

(λk − λk−1) ∆m−1xk

∣∣∣∣∣ ≤ K (12)

for K > 0. We obtain the following equality that x ∈ `∞(∆m
λ ), hence the

inclusion `∞(∆m−1
λ ) ⊂ `∞(∆m

λ ) holds.∣∣∣∣∣ 1

λn

n∑
k=0

(λk − λk−1)∆mxk

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

λn

n∑
k=0

(λk − λk−1)∆m−1xk

∣∣∣∣∣+
∣∣∣∣∣ 1

λn

n∑
k=0

(λk − λk−1)∆m−1xk−1

∣∣∣∣∣ .
(13)

To show strict, we consider x = (xk) defined by x = (km) , then we obtain
x ∈ `∞(∆m

λ )− `∞(∆m−1
λ ).
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4 The Bases for the Spaces c (∆m
λ ) and c0 (∆m

λ )

If a normed sequence space X contains a sequence (bn) with the property that
for every x ∈ X there is a unique sequence (αn) of scalars such that

lim
n
‖x− (α0b0 + α1b1 + ...+ αnbn)‖ = 0. (14)

Then (bn) is called a Schauder basis (or briefly basis) for X. The series
∑
αkbk

which has the sum x is then called the expansion of x with respect to (bn) ,
and written as x =

∑
k
αkbk.

Theorem 4.1 Define the sequence b(k) (λ,m) =
{
b(k)
n (λ,m)

}∞
k=0

for every

fixed k,m ∈ N and by

b(k)
n (λ,m) =



(
m+n−k−1

n−k

)
λk

λk−λk−1
−
(

m+n−k−2

n−k−1

)
λk

λk+1−λk
, n > k

λk
λk−λk−1

, n = k

0, n < k

. (15)

Then, the sequence
{
b(k)
n (λ,m)

}∞
k=0

is a basis for the space c0 (∆m
λ ) and every

x ∈ c0 (∆m
λ ) has a unique representation of the form

x =
∑
k

αk (λ) b(k) (λ,m) (16)

where αk (λ) = Λ̃k (x) for all k ∈ N.

Theorem 4.2 The sequence
{
b, b(0) (λ,m) , b(1) (λ,m) , ...

}
is a basis for the

space c (∆m
λ ) and every x ∈ c (∆m

λ ) has a unique representation of the form

x = lb+
∑
k

[αk (λ)− l] b(k) (λ,m) ; (17)

where αk (λ) = Λ̃k (x) for all k ∈ N, the sequence b = (bk) is defined by

bk =
k∑
j=0

(
m+ k − j − 1

k − j

)
. (18)

Corollary 4.3 The difference sequence spaces c (∆m
λ ) and c0 (∆m

λ ) are seper-
able.



Some Generalized Difference... 43

5 The α−, β− and γ−Duals of the Spaces c (∆m
λ )

and c0 (∆m
λ )

In this section, we introduce and prove the theorems determining the α−, β−
and γ− duals of the difference sequence spaces c (∆m

λ ) and c0 (∆m
λ ) of non-

absolute type.
For arbitrary sequence spaces X and Y ,the set M (X, Y ) defined by

M (X, Y ) = {a = (ak) ∈ w : ax = (akxk) ∈ Y for all x = (xk) ∈ X} (19)

is called the multipier space of X and Y.
With the notation of (19); the α−, β− and γ−duals of a sequence space

X, which are respectively denoted by Xα, Xβ and Xγ are defined by

Xα = M (X, `1) , Xβ = M (X, cs) and Xγ = M (X, bs) . (20)

Now, we may begin with lemmas which are needed in proving theorems.

Lemma 5.1 A ∈ (c0 : `1) = (c : `1) if and only if

sup
K∈F

∑
n

∣∣∣∣∣∣
∑
k∈K

ank

∣∣∣∣∣∣ <∞. (21)

Lemma 5.2 A ∈ (c0 : c) if and only if

lim
n
ank exists for each k ∈ N, (22)

sup
n

∑
k

|ank| <∞. (23)

Lemma 5.3 A ∈ (c : c) if and only if (22) and (23) hold, and

lim
n

∑
k

ank exists. (24)

Lemma 5.4 A ∈ (c0 : `∞) = (c : `∞) if and only if (23) holds.

Lemma 5.5 A ∈ (`∞ : c) if and only if (22) holds and

lim
n→∞

∑
k

|ank| =
∑
k

|αk| . (25)

Theorem 5.6 The α−dual of the space c0 (∆m
λ ) and c (∆m

λ ) is the set

bλ1 =

a = (ak) ∈ w : sup
K∈F

∑
n

∣∣∣∣∣∣
∑
k∈K

bnk (λ,m)

∣∣∣∣∣∣ <∞
 ; (26)

where the matrix Bλ =
(
bλmnk

)
is defined via the sequence a = (ak) by
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b(k)
n (λ,m) =



[(
m+n−k−1

n−k

)
λk

λk−λk−1
−
(

m+n−k−2

n−k−1

)
λk

λk+1−λk

]
an, n > k

λn
λn−λn−1

an, n = k

0, n < k

.

(27)
Proof: Let a = (ak) ∈ w. Then, we obtain the equality

akxk =
n∑
k=0

(
m+n−k−1

n−k

)
k∑

j=k−1

(−1)k−j
λj

λk − λk−1

yj = Bλ
n (y) , (n ∈ N) .

(28)
Thus, we observe by (28) that ax = (akxk) ∈ `1 whenever x = (xk) ∈ c0 (∆m

λ )
or c (∆m

λ ) if and only if Bλy ∈ `1 whenever y = (yk) ∈ c0 or c. This means that
the the sequence a = (ak) is in the α−dual of the spaces c0 (∆m

λ ) or c (∆m
λ ) if

and only if Bλ ∈ (c0 : `1) = (c : `1) . We therefore obtain by Lemma 5.1 with
Bλ instead of A that a ∈ {c0 (∆m

λ )}α = {c (∆m
λ )}α if and only if

sup
K∈F

∑
n

∣∣∣∣∣∣
∑
k∈K

bnk (λ,m)

∣∣∣∣∣∣ <∞. (29)

Which leads us to the consequence that {c0 (∆m
λ )}α = {c (∆m

λ )}α = bλ1 . This
concludes proof.

Theorem 5.7 Define the sets

bλ2 =

a = (ak) ∈ w :
∞∑
j=k

(
m+n−j−1

n−j

)
aj exists for each k ∈ N.

 (30)

bλ3 =

{
a = (ak) ∈ w : sup

n∈N

n−1∑
k=0

|gk (n)| <∞.
}

(31)

bλ4 =

{
a = (ak) ∈ w : sup

n∈N

∣∣∣∣∣ λn
λn − λn−1

an

∣∣∣∣∣ <∞.
}

(32)

bλ5 =

a = (ak) ∈ w : lim
n→∞

n∑
k=0

k∑
j=0

(
m+ k − j − 1

k − j

)
ak exists.

 (33)

bλ6 =

{
a = (ak) ∈ w : lim

n→∞

∑
k

∣∣∣tλnk∣∣∣ =
∑
k

∣∣∣∣ lim
n→∞

tλnk

∣∣∣∣
}

(34)

where the matrice T λ =
(
tλnk
)

is defined as follow:

tλnk =


ak (n) , k < n
λn

λn−λn−1
an, k = n

0, k > n

(35)
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for all k, n ∈ N and the ak (n) is defined by

ak (n) = λk

 1

λk − λk−1

n∑
j=k

(
m+j−k−1

j−k

)
aj −

1

λk+1 − λk

n∑
j=k

(
m+j−k−2

j−k−1

)
aj

 yk
(36)

for k < n. Then {c0 (∆m
λ )}β = bλ2 ∩ bλ3 ∩ bλ4 , {c (∆m

λ )}β = bλ2 ∩ bλ3 ∩ bλ4 ∩ bλ5 and
{`∞ (∆m

λ )}β = bλ2 ∩ bλ4 ∩ bλ6 .

Proof: We have from (5)

n∑
k=0

akxk =
n∑
k=0

 k∑
j=0

(
m+k−j−1

k−j

) j∑
i=j−1

(−1)j−i
λi

λj − λj−1

yi

 ak

=
n−1∑
k=0

λk


n∑
j=k

(
m+j−k−1

j−k

)
aj

λk − λk−1

−

n∑
j=k+1

(
m+j−k−2

j−k−1

)
aj

λk+1 − λk

 yk +
anλn

λn − λn−1

yn

=
n−1∑
k=0

ak (n) yk +
anλn

λn − λn−1

yn =
(
T λy

)
n

; (n ∈ N) .

Then we derive that ax = (akxk) ∈ cs whenever x = (xk) ∈ c0 (∆m
λ ) if and only

if T λy ∈ c whenever y = (yk) ∈ c0. This means that a = (ak) ∈ {c0 (∆m
λ )}β if

and only if T λ ∈ (c0 : c) . Therefore, by using Lemma 5.2, we obtain

∞∑
j=k

(
m+ k − j − 1

k − j

)
aj exists for each k ∈ N, (37)

sup
n∈N

n−1∑
k=0

|ak (n)| <∞ (38)

and

sup
k∈N

n−1∑
k=0

∣∣∣∣∣ λk
λk − λk−1

ak

∣∣∣∣∣ <∞. (39)

Hence we conclude that {c0 (∆m
λ )}β = bλ2 ∩ bλ3 ∩ bλ4 .

Theorem 5.8 {c0 (∆m
λ )}γ = {c (∆m

λ )}γ = {`∞ (∆m
λ )}γ = bλ3 ∩ bλ4 .

Proof: It can be proved similalry as the proof of the Theorem 5.7 with
Lemma 5.4 instead of Lemma 5.2.

Acknowledgements: We thank the anonymous referees for their com-
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