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Abstract
In this paper, the general solution and the generalized Hyers-Ulam-Rassias

stability of the following Euler-Lagrange type quadratic functional equation

f(x+ky)+f(y+kz)+f(z+kx)−kf(x+y+z) = (k2−k+1)
(
f(x)+f(y)+f(z)

)
,

for all k ∈ N, is investigated.
Keywords: Quadratic functional equation, Hyers-Ulam-Rassias stability.

1 Introduction

The stability problem for the functional equations was first raised by S. M.
Ulam [21]. He proposed the following famous question concerning the stability
of homomorphisms:

Let G be a group and let G′ be a metric group with metric d. Given ε > 0,
does there exist a δ > 0 such that if f : G −→ G′ satisfies

d(f(xy), f(x)f(y)) < δ for all x, y ∈ G,

then there exists a homomorphism F : G −→ G′ with

d(f(x), F (x)) < ε for all x ∈ G ?

In 1941, Hyers [6] considered the case of approximately additive mappings
f : X −→ Y , where X and Y are Banach spaces and f satisfies

‖f(x+ y)− f(x)− f(y)‖ ≤ ε



On the Generalized Hyers-Ulam Stability of an... 17

for all x, y ∈ X. It was shown that the limit

F (x) = lim
n−→∞

2−nf(2nx),

exists for all x ∈ X and that F : X −→ Y is the unique additive mapping
satisfying

‖f(x)− F (x)‖ ≤ ε.

In 1950, T. Aoki [1] gave the generalized Hyers’ theorem. Afterwards, in 1978,
a generalization of Hyers’ theorem provided by Th. M. Rassias [19].

The quadratic function f(x) = cx2 satisfies the functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y),

and therefore the above equation is called the quadratic functional equation.

In 1982-1994, J. M. Rassias (see [11-18]) solved the Ulam problem for dif-
ferent mappings and for many Euler-Lagrange type quadratic mappings, by
involving a product of different powers of norms. In addition, J. M. Rassias
considered the mixed product-sum of powers of norms control function [20].
In 1994, a generalization of the Rassias’ theorem was obtained by Gavruta [5]
by replacing the unbounded Cauchy difference by a general control function in
the spirit of Rassias’ approach. For more details about the results concerning
such problems the reader is referred to [2, 3, 4, 9, 10] and [22].

Consider the following functional equations:

f(x+ y) + f(y + z) + f(z + x) = f(x+ y + z) + f(x) + f(y) + f(z), (1)

and

f(x+2y)+f(y+2z)+f(z+2x) = 2f(x+y+z)+3
(
f(x)+f(y)+f(z)

)
. (2)

The functional equation (1) was solved by Pl. Kannappan in [8]. Recently,
the author investigated in his paper [22] the general solution and generalized
Hyers-Ulam stability of the equation (2).

In the present paper we consider the quadratic functional equation

f(x+ky)+f(y+kz)+f(z+kx)−kf(x+y+z) = (k2−k+1)
(
f(x)+f(y)+f(z)

)
,

for all k ∈ N, which is a generalization of equations (1) and (2), and determine
the general solution and generalized Hyers-Ulam stability of this functional
equation.
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2 The General Solution and Hyers-Ulam Sta-

bility

The following theorem provide the general solution of the proposed functional
equation by establishing a connection with the classical quadratic functional
equation.

For convenience, we use the following abbreviations:

Df(x, y, z) = f(x+ ky) + f(y + kz) + f(z + kx)

− kf(x+ y + z)− (k2 − k + 1)
(
f(x) + f(y) + f(z)

)
. (3)

Theorem 2.1 Let X and Y be real vector spaces. A function f : X −→ Y
satisfies the functional equation

Df(x, y, z) = 0, (4)

for all x, y, z ∈ X and all k ∈ N if and only if it satisfies

f(x+ y) + f(x− y) = 2f(x) + 2f(y), (x, y ∈ X). (5)

Proof: The result is proved for the case k = 1 and k = 2, in [8] and [22],
respectively. So we give the proof for k ≥ 3. Assume that a function f :
X −→ Y satisfies (4). Letting x = y = z in (4), we get

3f((k + 1)x)− kf(3x) = 3(k2 − k + 1)f(x)

for all x ∈ X, which implies that f(0) = 0. Letting y = z = 0 in (4), we have

f(x) + f(kx) = kf(x) + (k2 − k + 1)f(x),

which yields
f(kx) = k2f(x) (‡),

for all x ∈ X and all k ∈ N. Letting z = 0 in (4), we obtain

f(x+ ky) + f(y) + f(kx) = kf(x+ y) + (k2 − k + 1)
(
f(x) + f(y)

)
.

Applying Eq. (‡), then we have

f(x+ ky)− kf(x+ y) = (1− k)f(x) + (k2 − k)f(y). (6)

Replacing x by y and y by x in (6), so

f(y + kx)− kf(y + x) = (1− k)f(y) + (k2 − k)f(x). (7)
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Letting y = z in (4), we get

f(x+ky) + f((k+ 1)y) + f(y+kx) = kf(x+ 2y) + (k2−k+ 1)
(
f(x) + 2f(y)

)
.

Using Eq.(‡) for k + 1, the above equation simplifies to

f(x+ ky) + f(y + kx)− kf(x+ 2y) =

k2
(
f(x) + f(y)

)
+ (1− k)f(x) + (1− 4k)f(y). (8)

Eliminating f(x+ ky) and f(y+ kx) from (8) by applying (6) and (7), we get

2kf(x+ y) + 2kf(y) = kf(x) + kf(x+ 2y). (9)

Replacing x by x−y in above equation, thus the classical quadratic functional
equation (5) follows.

Conversely, assume that a function f : X −→ Y satisfies (5), and suppose
the result is establish for each s < k, where k ≥ 3. Replacing x by x+(k−1)y
and all cyclic permutations of the variables in (5), then

f(x+ ky) + f(x+ (k − 2)y) = 2f(x+ (k − 1)y) + 2f(y),

f(y + kz) + f(y + (k − 2)z) = 2f(y + (k − 1)z) + 2f(z), (10)

f(z + kx) + f(z + (k − 2)x) = 2f(z + (k − 1)x) + 2f(x).

By ammunitions we have

f(x+ (k − 1)y) + f(y + (k − 1)z) + f(z + (k − 1)x) =

(k− 1)f(x+ y+ z) + (k2− 3k+ 3)
(
f(x) + f(y) + f(z)

)
. (11)

and
f(x+ (k − 2)y) + f(y + (k − 2)z) + f(z + (k − 2)x) =

(k− 2)f(x+ y+ z) + (k2− 5k+ 7)
(
f(x) + f(y) + f(z)

)
. (12)

Applying Eq. (11) and (12), to eliminate f(x + (k − 1)y), f(x + (k − 2)y)
and all cyclic permutations of the variables in the sum of all equations in (10),
then the quadratic functional equation (4) follows, so the induction argument
finishes the proof.

Theorem 2.2 Suppose X is a real vector space and Y is a Banach space.
Let k ≥ 3 and ϕ : X3 −→ [0,∞) be a function such that

∞∑
n=0

k−2nϕ(knx, kny, knz) (13)
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be convergent. Let f : X −→ Y be a mapping satisfying f(0) = 0 and

‖Df(x, y, z)‖ ≤ ϕ(x, y, z) (14)

for all x, y, z ∈ X, then there exists a unique function F : X −→ Y which
satisfies (4) and

‖f(x)− F (x)‖ ≤ 1

k2

∞∑
n=0

k−2nϕ(knx, 0, 0) (x ∈ X). (15)

Proof: Letting y = z = 0 in (14), we get

‖f(kx)− k2f(x)‖ ≤ ϕ(x, 0, 0).

Dividing the above inequality by k2, we obtain

‖f(kx)

k2
− f(x)‖ ≤ 1

k2
ϕ(x, 0, 0). (16)

Make the induction hypothesis

‖f(knx)

k2n
− f(x)‖ ≤ 1

k2

n−1∑
i=0

k−2iϕ(kix, 0, 0), (17)

which is true for n = 1 by (16). Replacing x by kmx in (17) and divide the
result by k2m, then we have

‖f(kn+mx)

k2(n+m)
− f(kmx)

k2m
‖ ≤ 1

k2

n+m−1∑
i=m

k−2iϕ(kix, 0, 0) (x ∈ X).

It follows that the sequence { 1
k2n
f(knx)} is Cauchy sequence for all x ∈ X.

Since Y is complete, we may define a function F : X −→ Y by

F (x) := lim
n−→∞

1

k2n
f(knx), (x ∈ X).

Then by the definition of F , we can see that (15) holds. To show that F
satisfies in (4), replacing x, y and z in (14) by knx, kny and knz, respectively,
and divide the result by k2n, we get

‖ 1

k2n
Df(knx, kny, knz)‖ ≤ ϕ(knx, kny, knz)

k2n
→ 0, as n→∞,

which implies F satisfies (4). The uniqueness of F follows from Theorem 2.1.
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Corollary 2.3 Let k ≥ 3 and f : X −→ Y be a function such that

‖Df(x, y, z)‖ ≤ ε

for some ε > 0 and for all x, y, z ∈ X. Then there exists a unique function
F : X −→ Y which satisfies (4), and

‖f(x)− F (x)‖ ≤ ε

k2 − 1
(x ∈ X).

Proof: Apply Theorem 2.2 for ϕ(x, y, z) = ε.

Corollary 2.4 Let k ≥ 3 and f : X −→ Y be a function such that satisfies

Df(x, y, z)‖ ≤ ε(‖x‖p + ‖y‖p + ‖z‖p),

with p < 2 and for some ε > 0 and for all x, y, z ∈ X. Then there exists a
unique quadratic function F : X −→ Y which satisfies (4), and

‖f(x)− F (x)‖ ≤ ε

|k2 − kp|
‖x‖p (x ∈ X).

Proof: Apply Theorem 2.2 for ϕ(x, y, z) = ε(‖x‖p + ‖y‖p + ‖z‖p).

3 Conclusion

This paper generalized some well-known results in the area of Hyers-Ulam
stability of the Euler-Lagrange-Rassias type quadratic functional equation in
three variables, in fact, the proposed quadratic functional equations which are
given in [8] and [22], can be obtained of the proposed functional equation in
the present paper, for k = 1 and k = 2, respectively.

Concluding remarks, the results of the paper is also true for all k ∈ Z, but
the paper discussed for the case k ∈ N.

If we take k = −1 in the proposed quadratic functional equation we get

f(x− y) + f(y − z) + f(z − x) + f(x+ y + z) = 3
(
f(x) + f(y) + f(z)

)
,

that Hyers-Ulam stability of it investigated by Jung in [7]. Thus, the paper is
also generalized the Jung’s work.
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