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Abstract

In this paper, we investigate a new class ©F f& of analytic functions in
the open unit disk. By using the geometry function theory, we discuss the
radius problems between the @g)"& and the convex functions or close-to-convex
functions. Several properties as the sufficient and necessary conditions and
modified-Hadamard product are given.
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1 Introduction

Let A, be the class of functions of the form

f(z) =2+ i a, 2", peZt={1,2,3,..}, (1)

n=p+1

that are p-valently analytic in the open unit disk U = {z € C: |z| < 1}. If
two functions fi(z) € A,, fa(z) € A, and

filz) =2+ Z aniz",i=1,2,2 €U,

n=p+1
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then we define the fi & fa(z) as

f1® fa(z) =22+ Z (@pa + an2)z", z € U.

n=p+1

Also, let K,(a) denote the subclass of A, consisting of f(z) which satisfy

%<L+d%”>>a,(zem 2)

f'(2)

for some real a(0 < a < p). A function f(z) € K,(a) is said to be p-
valently convex of order o in U. We note that IC;(a) = K is usual convex class.
Moreover, a function f(z) € A, is in the class C,(«) if

%(M) >a, z€U (3)

pzP1

for some real a(0 < o < 1). C;(0) = C is the close-to-convex class. These are
many results on the classes ICp(«v) and Cp(«)(See [1, 2, 8, 9, 10, 13]).

Let A,(#) denote the subclass of A, consisting of functions f(z) with the
coefficients a,, = |a,|e’(P9+™ (n > p +1). Here, we introduce the subclasses
C,(0, ) and K, (0, a) as follows: Cp(0, ) = A,(0)NCp(r), K,(0, ) = A,(0)N
K,(a). In fact, The Ci(0,«) was introduced by Uyanik, Owa [12] and the
K1(6,«) = K(0, ) was introduced by Frasin [7].

In some earlier investigations, various interesting subclasses of the class A,
and A,(0) have been studied with different view points(see [3, 4]). Motivated
by the aforementioned works done by Uyanik et al.[11, 12] and Frasin et al.[5,
6, 7], we now introduce the following subclass @’gf&’gs of analytic functions:

Definition 1.1 For the functions f(z) € A, given by (1), we say that
f(z) € 92’7\52, if there exists a function g(z) = 2 + > b,2" € G such

n=p+1
that
/ "
&Z(f(?«‘) eag<z>> A (f(Z) @g(z)) crazeU. @)
2P 2P
where &, & € C, A >0, pe ZT and
1
g:{ﬂaeAM%H:a@H:—?H% (5)
2
bp+3 = —gap+3, ,bn = (n —p — 1)a,n, }

In the present paper, some properties for @gf‘& are given. We discuss the
radius problems for f(z) belonging to C,(6, ) or K,(6,a) to be in the class

@gij\@, and obtain the modified-Hadamard product results.
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2 Sufficient and Necessary Conditions

Theorem 2.1 If the function f(z) given by (1) satisfies the condition

[e.9]

Y llal+[€l(n —p = Dlan] < A, (6)
n=p+1
then f(z) € @gj\& with a function

g(z) =2"+ > bu2" €,

n=p+1

where &1, & € C, A >0 and pe ZT = {1,2,3, ...}

Proof For f(z) € A, and ¢g(z) € G, using the (5), then we have

- (f(Z) @ g(z)) e (f(z) @ g(z))

zP 2P

o0

> Gn—p)+&n—p)(n—p—1)](an+b)z""

< Y l&ln —p) + [l (n —p)(n—p = Dljay + bl

Y &l +[&l(n —p = 1)]lanl.

n=p+1

It follows from(4), (6) and (7), then f(z) € @?;’7\52. The proof of the theorem
is complete.

Theorem 2.2 If f(z) = 2 + ZJrlanz" € @g”\& with a function
n=p

and arg &, = arg &, = v and a, = |a, [P then we have

[e.9]

Y llal+ 1€l —p = Dllan] < A

n=p+1
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Proof If f(z) € 92/,\52 with arg £, = arg &, = v and a,, = |a,|e (P97,
applying the (5), then we get

&Z(f(Z) @g(z)) A (f(z)igm) _ -

zp

o0

= Y [G(n—p)+ &0 —p)(n—p—Dl(an+by)z""

=| Y [&+&n—p—1)a,z"

n=p+1
00

— | 3 (6] + [l (n — p — 1))y i P n
n=p+1

o

= | 3" lla] + &l (n — p — D]jag|e’ P2

n=p+1

<\

for all z € U. Letting 2z € U such that z = |z|e~®, then we have that

Z [|£1| + ’fz’(n —p— 1)”an’ei(nfp)ezn,p (9)
n=p+1
= Z [’51' + ‘fQ‘(TL —p— 1)”0/”“2’77,7])
n=p+1

Now, taking |z| — 17, form (8) and (9), it gives the required result. The proof
of the theorem is complete.

3 Radius Problems with Convex and Close-to-
Convex Functions

Working in a similar way as in Uyanik, Owa [11, Lemma 3.1] and Frasin |6,
Lemma 4.1], we give the following Lemma 3.1 and Lemma 3.2:

Lemma 3.1 Suppose f(z) =2+ >, anz" € C,(0, ), then we have
n=p+1

o0

> nlan) <pl-a),(0<a<1).

n=p+1
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Lemma 3.2 Suppose f(z) =2+ >, an,2" € K,(0,a), then we have

n=p+1
= n
Z —(n—a)la,] <p—a,(0<a<p).
n=p+1

Theorem 3.3 Let f(z) = 22+ > ap,2" € Cy(6,a) and §(0 < 0] < 1)

n=p+1
is a complex number, then —p (02) € @g &, with a function g(z) € G for
0 < 19| < [60(N)|, where |do(N)] is the smallest positive root of the equation

181/ — o)1 [8]?)
16T BRI /(L — 0) — Jape]? — A1 — [5)? =

Proof If f(z) € C,(0, ), then we have that

—f (6z) = 2P + Z a, 0" P2",
n=p+1
Applying Theorem 2.1, we need to show that

o0

> ll&] + 1€l —p = D]laq| |6 < A.

n=p+1

By using the Cauchy—Schwarz inequality, we can obtain

oo

Y llal+ [€l(n — p = 1)]lan]lo]" (10)

n=p+1

ETP(”;J(;F”) ( i;laﬂ);
+%< > (n—p- |5|2"> ( > |“n|2>

n=p+2 n=p+2

In fact, Lemma 3.1 implies that

Z Jan|* < Z || (11)
n=p+1 n=p+1

< > nan] < p(l—a),

n=p+1
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So we also have
o
D an < p(1 = a) = |ana*
n=p+1

Moreover, putting z = |§]?, then we have

e xpﬂ
> e 3w
n=p+1 n=p+1
and
Y (n—p—1)5P"
n=p+2
= 1+z
— o -1 2..n — p+2'
i
Following (10)-(14), we can obtain that
> L&l + &l (n —p = 1)]lan]a]"
n=p+1

‘51‘ . 2n : - 2 :
< W E 6] § |an|
n=p+1 n=p+1

i (n—p- |5|2”> (Z Ian|2>

n=p+2

[N

+
‘K
>
VN 7~
[u—
+
8
S
=
+
(Y]
~
Wl

(p(l —a) - Iap+1|2>

VAN
:‘R
peyl il
N
=R
| S
+
a -
~__—
(NI
/N
=
[S—Y
|
L
~__—
N|=

(SIS
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+ % ((11:L;)3“"p+2> (p(l —a) — |ap+1|2>
)

|§|\/1+|5| 0]2/p(1 — )

— lapn|”

(1—I5I) (1—82)2

(12)

(13)

(14)
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We need to consider the complex number §(0 < || < 1) such that

& |5|\/ L6 |\/1 + 0PI VP — @) — apal® _

(1—|5| ) (1-52)2

Hence, we definite the following function with |§(\)| by

F(16(N)D) = [&l18]v/p(1 = a)(1 = [3])

16T BRI /(1L — @) — lapal? — AL — [3)3.

It is easily to know that F'(0) = —A < 0 and

F(1) = V2I&|y/p(1 = ) = |ayia]? > 0,

which implies that there exists some do(A) such that F(|dp(N)]) = 0(0 <
|00(A)| < 1). The proof of the theorem is complete.

Theorem 3.4 Let f(z) = 22+ > a,2" € K,(0,) and 6(0 < |§] < 1)
n=p+1
is a complex number. Then éipf(éz) @pA with a function g(z) € G for

1 2

0 < |6] < |00(N)|, where |09(N)| is the smallest positive root of the equation

[€ullo]v/p — a1 — [6]%) + |&[ V1 + |5|2|5|2\/p—0z— a1 |” = A1 = [0]%)2 =

Proof Since f(z) € K,(0, @), using Lemma 3.2, we have that

o0

n
S 2 —a)lad <p-a,
ne=pt1 P
which leads to
oo o o n
el < ) n=plan* < D =(n—a)lay)? (16)
n=p+1 n=p+1 n=p+1 p

n
< Z —(n—a)la,| <p—a.
n=p+1
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Hence, from (15), we can also note that

5 1161+ €l — p — a3 (17)
n=p+1
<@( > |6|2")2< 3 o F)z
n=p+1 n=p+1
+%( S n-p- |6|2”) ( > |an|2)
n=p+2 n=p+2

(NI

Gl (o)
56
- ((1_1—+ >> (p o ‘“’”“'2)

_’§||5!\/ s |\/1+|5|2|5|2\/p—0z—|6Lp+1|2

= 3

(1—of? ) (1—[8%)

Using the same technique as in the proof of Theorem 3.3, we derive the result.
The proof of the theorem is complete.

[N

4 Modified-Hadamard Product

n=p+1 n=p+1
We define modified Hadamard product for the functions f, g as follows:

(fxg)(z) = 2"+ Z ||| Dy | (P =D) 1 € U

n=p+1
Theorem 4.1 If fi(2) = 2P+ Y. |ap|e((m PO n ¢ @121)‘512 with g1(2) €
n=p+1
G, f2(2) = 2P+ 3 apa|e (P01 m ¢ @g% with a function gs(2) € G and

n=p+1
argé) = arg&s =y, then we have

(fi* f2)(2) € O,

with a function g(z) € G, where

A= —X\ A
|51| e
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Proof Suppose fi(z) = # + 3 [P € OFT, folz) =

2P+ Z+1|an,2\ei(("‘p)9)_7)2” c @gg and argé; = argéy, = 7, then from
n=p
Theorem 2.2, we have

oo

3 [1&:1] + Iéz\(nA—p— Dllena| (18)

n=p+1

and
o0

- Lalt |5zr<nA—p— Dllana| (19)

n=p+1

Moreover, (18) and (19) imply that

(e}

(s &+ |§2|(n§1p_ 1>J|an,1\}é <1 (20)

n=p+1

and
o

[y Hsl\+|sz|<nA—2p—1>Hanzl}2 <1. (21)

n=p+1

By using the Holder inequality with (20) and (21), we get

nil{[llelﬁzli?—p—1)]}5{[|€1|+|€z|§721—p—1)]}§\/m§ L
> lal+ it~ 01} Y b <1 2

n=p+1

SO

In order to obtain the (f * g)(z) € @gg with a function ¢g(z) € G, we have to
find the corresponding \* such that

fﬁ 61| + &l (n _ff Dllanallbnzl _ | (23)
n=p+1

Following (22), then (23) hold true if for any n > p + 1,

L oLyl 1
TN A |an1|[bn 2]

or

X > (M)2(A0)2 4/ [an|[bnal- (24)
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In fact, (24) implies that

A = max{.Z(n)|Z(n) = (M)?(A2)21/|an1||busl, ¥V > 1 + p}.

Furthermore, from (22), it is easy to know that

1 1
V0anllbu| < AT 1>(A1>\2)2, (25)

since [&1] + |&](n — p — 1) is increasing in n, following (25), then we can see

that
1 ) 1
,,E,p - )\ 2 )\ 2 n bn S )\)\
(n) = (M)2(A2) \/ |a 1“ ,1’ &+ |&|(n—p—1) 142

1 1
Ade = — Ao,
G+ el —p=Dllazper 1677

The proof of the theorem is complete.

=T
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