

Gen. Math. Notes, Vol. 23, No. 1, July 2014, pp.15-21 ISSN 2219-7184; Copyright ©ICSRS Publication, 2014 www.i-csrs.org
Available free online at http://www.geman.in

Module Amenability and Tensor Product of Banach Algebras

A. Sahleh¹ and S. Grailo Tanha²

^{1,2}Department of Mathematics, Faculty of Science University of Guilan, Rasht 1914, Iran ¹E-mail: sahlehj@guilan.ac.ir ²E-mail: so.grailo@guilan.ac.ir

(Received: 11-3-14 / Accepted: 27-4-14)

Abstract

Let Banach algebra \mathcal{A} is a $\mathcal{U}-module$ with compatible actions. In this paper we show that $\mathcal{A} \hat{\otimes} \mathcal{A}$ is module amenable when \mathcal{A} is module amenable. In particular, we investigate module amenability of unitization of \mathcal{A} .

Keywords: module amenability, module derivation ,commutative action, Banach algebra.

1 Introduction

A Banach algebra \mathcal{A} is amenable if every bounded derivation from \mathcal{A} into any dual Banach \mathcal{A} -module inner. This concept was introduced by Barry Johnson in [4]. He proved that if \mathcal{A} and \mathcal{B} are amenable Banach algebra, then so is $\mathcal{A} \hat{\otimes} \mathcal{B}$ (see also [3]).

M. Amini in [1] introduced the concept of module amenability for a Banach algebra which is a Banach module on another Banach algebra with compatible actions. This could be considered as a generalization of the Johnson's amenability.

In this paper we prove that module amenability of \mathcal{A} implies module amenability of $\mathcal{A} \hat{\otimes} \mathcal{A}$ as a \mathcal{U} -module, when \mathcal{A} has a unite and it is a commutative \mathcal{U} -module. Also we show, when \mathcal{A} is a \mathcal{U} -module with the compatible actions, also \mathcal{A}^{\sharp} is a \mathcal{U} -module if and only if the actions are trivial, where \mathcal{A}^{\sharp}

16 A. Sahleh et al.

is the unitization of A.

2 Notation and Preliminaries

Throughout this paper, \mathcal{A} and \mathcal{U} are Banach algebras such that \mathcal{A} is a Banach \mathcal{U} -module with compatible action, that is

$$\alpha \cdot (ab) = (\alpha \cdot a)b, \quad (ab) \cdot \alpha = a(b \cdot \alpha) \qquad (a, b \in \mathcal{A}, \alpha \in \mathcal{U}).$$

Moreover, if $\alpha \cdot a = a \cdot \alpha$, we say that \mathcal{A} is commutative $\mathcal{U} - module$.

The Banach algebra \mathcal{U} acts trivially on \mathcal{A} from left (right) if for each $\alpha \in \mathcal{U}$ and $a \in \mathcal{A}$, $\alpha \cdot a = f(\alpha)a$ $(a \cdot \alpha = f(\alpha)a)$, where f is a continuous character on \mathcal{U} .

Let X be a Banach A-module and a Banach U-module with compatible actions, that is

$$\alpha \cdot (a \cdot x) = (\alpha \cdot a) \cdot x, a \cdot (\alpha \cdot x) = (a \cdot \alpha) \cdot x,$$
$$(\alpha \cdot x) \cdot a = \alpha \cdot (x \cdot a) \ (a \in \mathcal{A}, \alpha \in \mathcal{U}, x \in X);$$

and the same for right or two-sided actions, then we say that X is a Banach $\mathcal{A}\text{-}\mathcal{U}\text{-}\mathrm{module}$. If moreover

$$\alpha \cdot x = x \cdot \alpha \qquad (\alpha \in \mathcal{U}, x \in X)$$

then X is called a commutative $\mathcal{A}-\mathcal{U}$ -module. If X is a (commutative) Banach $\mathcal{A}-\mathcal{U}$ -module then so is X^* , where the actions of \mathcal{A} and \mathcal{U} on X^* are defined by

$$(\alpha \cdot f)(x) = f(x \cdot \alpha), \quad (a \cdot f)(x) = f(x \cdot a) \quad (a \in \mathcal{A}, \alpha \in \mathcal{U}, x \in X, f \in X^*)$$

and the same for the right actions.

It is well known that the projective tensor product $\mathcal{A} \hat{\otimes} \mathcal{A}$ is a Banach algebra with respect to the canonical multiplication defined by

$$(a \otimes b)(c \otimes d) = (ac \otimes bd)$$

and extended by bi-linearity and continuity. Then $\mathcal{A} \hat{\otimes} \mathcal{A}$ is a Banach \mathcal{U} -module by the following canonical actions:

$$\alpha \cdot (a \otimes b) = (\alpha \cdot a) \otimes b, \quad (a \otimes b) \cdot \alpha = (a \otimes b \cdot \alpha) \qquad (\alpha \in \mathcal{U}, a, b \in \mathcal{A})$$

similarity, for the right actions.

Let I be the closed ideal of the projective tensor product $\mathcal{A} \hat{\otimes} \mathcal{A}$ generated by elements of the form $\alpha \cdot a \otimes b - a \otimes b \cdot \alpha$ for $\alpha \in \mathcal{U}, a, b \in \mathcal{A}$. Also we consider J, the closed ideal of \mathcal{A} generated by elements of the form $(\alpha \cdot a)b - a(b \cdot \alpha)$ for $\alpha \in \mathcal{U}$, $a, b \in \mathcal{A}[5]$.

Let \mathcal{A} and \mathcal{U} be as in the above and X be a Banach $\mathcal{A} - \mathcal{U}$ -module. \mathcal{A} bounded map $D: \mathcal{A} \to X$ is called a module derivation if

$$D(a \pm b) = D(a) \pm D(b)$$
, $D(ab) = Da \cdot b + a \cdot Db$ $(a, b \in \mathcal{A})$
 $D(\alpha \cdot a) = \alpha \cdot D(a)$, $D(a \cdot \alpha) = D(a) \cdot \alpha$ $(a \in \mathcal{A}, \alpha \in \mathcal{U})$

although D is not necessary linear, but still boundedness implies its norm continuity (since it preserves subtraction). When X is commutative, each $x \in X$ defines a module derivation

$$\delta_x(a) = a \cdot x - x \cdot a \quad (a \in \mathcal{A})$$

which is called inner module derivations.

The Banach algebra \mathcal{A} is called module amenable (as an \mathcal{U} -module) if for any commutative Banach $\mathcal{A} - \mathcal{U}$ -module X, each module derivation $D : \mathcal{A} \to X^*$ is inner.

When the Banach algebra \mathcal{U} acts trivially on \mathcal{A} from left(right) and \mathcal{A} is module amenable we say that \mathcal{A} is module amenable with the trivial left(right) action. Bodaghi in [2] proved that if \mathcal{A} is a Banach \mathcal{U} -module with trivial left action and $\mathcal{A} \hat{\otimes} \mathcal{A}$ is module amenable, then $\mathcal{A}/J \hat{\otimes} \mathcal{A}/J$ is amenable.

3 Module Amenability of Tensor Product of Banach Algebras

Suppose that \mathcal{A} has a unit, we consider the projective tensor products $\mathcal{A} \hat{\otimes} e$ and $e \hat{\otimes} \mathcal{A}$ which are Banach \mathcal{U} -modules by the following usual actions:

$$\alpha \cdot (a \otimes e) = \alpha \cdot a \otimes e$$
 , $(a \otimes e) \circ \alpha = a \cdot \alpha \otimes e$ $(\alpha \in \mathcal{U}, a \in \mathcal{A})$,

$$\alpha \bullet (e \otimes a) = e \otimes \alpha \cdot a$$
 , $(e \otimes a) \cdot \alpha = e \otimes a \cdot \alpha$ $(\alpha \in \mathcal{U}, a \in \mathcal{A})$.

Note that although $\mathcal{A} \hat{\otimes} e$ and $e \hat{\otimes} \mathcal{A}$ are subalgebra of $\mathcal{A} \hat{\otimes} A$ but by the module actions defined on $\mathcal{A} \hat{\otimes} A$ they are not \mathcal{U} -modules.

Lemma 3.1. If \mathcal{A} is module amenable, then $\mathcal{A} \hat{\otimes} e$ and $e \hat{\otimes} \mathcal{A}$ are module amenable.

Proof. Consider a module homomorphism $\varphi : \mathcal{A} \to \mathcal{A} \hat{\otimes} e$ defined by $\varphi(a) = a \hat{\otimes} e$. By Proposition 2.5 of [1], the module amenability of \mathcal{A} implies the module amenability of $\mathcal{A} \hat{\otimes} e$. Similarly $e \hat{\otimes} \mathcal{A}$ is module amenable.

Theorem 3.2. Let \mathcal{A} be a commutative \mathcal{U} -module with a unit. If \mathcal{A} is module amenable, then so is $\mathcal{A} \hat{\otimes} \mathcal{A}$.

18 A. Sahleh et al.

Proof. Let X be a commutative $\mathcal{A} \hat{\otimes} \mathcal{A}$ - \mathcal{U} -module and $D : \mathcal{A} \hat{\otimes} \mathcal{A} \to X^*$ be a module derivation. Since X is a commutative \mathcal{U} -module, we have

$$(a \otimes e) \cdot (\alpha \cdot x) = (a \otimes e) \cdot (x \cdot \alpha)$$

$$= ((a \otimes e) \cdot x) \cdot \alpha$$

$$= \alpha \cdot ((a \otimes e) \cdot x)$$

$$= (\alpha \cdot (a \otimes e)) \cdot x$$

$$= (\alpha \cdot a \otimes e) \cdot x$$

$$= (a \cdot \alpha \otimes e) \cdot x$$

$$= ((a \otimes e) \circ \alpha) \cdot x.$$

Clearly $\alpha \cdot ((a \otimes e) \cdot x) = (\alpha \cdot (a \otimes e)) \cdot x, (\alpha \cdot x) \cdot (a \otimes e) = \alpha \cdot (x \cdot (a \otimes e)).$ And the same for right or two-sided actions. Thus X is a commutative $\mathcal{A} \hat{\otimes} e$ - \mathcal{U} -module with the compatible actions. Consider $\tilde{D}: \mathcal{A} \hat{\otimes} e \to X^*$ defined by $\tilde{D}(a \otimes e) = D(a \otimes e)$ for all $a \in \mathcal{A}$. By previous lemma, there exist $x^* \in X^*$ such that $\tilde{D} = \delta_{x^*}$. Hence $D|_{\mathcal{A} \hat{\otimes} e} = \delta_{x^*}$. Now consider $\tilde{\tilde{D}} := D - \delta_{x^*}$. Thus $\tilde{\tilde{D}}|_{\mathcal{A} \hat{\otimes} e} = 0$. Let F be the closed linear span of elements of the form

$$\{(a \otimes e) \cdot x - x \cdot (a \otimes e) : a \in \mathcal{A}, x \in X\}.$$

We prove in three step that F is a $e \hat{\otimes} A - \mathcal{U}$ -module with module actions given by

$$(e \otimes b) \star ((a \otimes e) \cdot x - x \cdot (a \otimes e)) := (a \otimes e) \cdot y - y \cdot (a \otimes e)$$

such that $y = (e \otimes b) \cdot x$ and

$$\alpha \diamond ((a \otimes e) \cdot x - x \cdot (a \otimes e)) = (\alpha \cdot a \otimes e) \cdot x - x \cdot (\alpha \cdot a \otimes e),$$

and the same for right or two-sided actions.

Step 1. we show that

$$\alpha \diamond ((e \otimes b) \star ((a \otimes e) \cdot x - x \cdot (a \otimes e))) = (\alpha \bullet (e \otimes b)) \star (a \otimes e) \cdot x - x \cdot (a \otimes e)).$$

We have

$$\alpha \diamond ((e \otimes b) \star ((a \otimes e) \cdot x - x \cdot (a \otimes e))) = \alpha \diamond ((a \otimes e) \cdot ((e \otimes b) \cdot x) - ((e \otimes b) \cdot x) \cdot (a \otimes e))$$

$$= (\alpha \cdot a \otimes e) \cdot ((e \otimes b) \cdot x) - ((e \otimes b) \cdot x) \cdot (\alpha \cdot a \otimes e)$$

$$= (\alpha \cdot (a \otimes e)) \cdot ((e \otimes b) \cdot x) \cdot (\alpha \cdot (a \otimes e))$$

$$= \alpha \cdot ((a \otimes e) \cdot ((e \otimes b) \cdot x))$$

$$- ((e \otimes b) \cdot (x \cdot \alpha)) \cdot (a \otimes e)$$

$$= ((a \otimes e) \cdot ((e \otimes b) \cdot x)) \cdot \alpha$$

$$- ((e \otimes b) \cdot (\alpha \cdot x)) \cdot (a \otimes e)$$

$$= (a \otimes e) \cdot ((e \otimes b) \cdot (x \cdot \alpha))$$

$$- ((e \otimes b \cdot \alpha) \cdot x) \cdot (a \otimes e)$$

$$= (a \otimes e) \cdot ((e \otimes b) \cdot (\alpha \cdot x))$$

$$- ((e \otimes a \cdot b) \cdot x) \cdot (a \otimes e)$$

$$= (a \otimes e) \cdot ((a \otimes e) \cdot ((a \otimes e)) \cdot x)$$

$$- ((a \otimes e) \cdot ((a \otimes e)) \cdot x) \cdot (a \otimes e)$$

$$= (a \otimes e) \cdot ((a \otimes e) \cdot ((a \otimes e)) \cdot x)$$

$$- ((a \otimes e) \cdot ((a \otimes e)) \cdot x) \cdot (a \otimes e)$$

and proof of step 1 is complete.

Step 2. Now we prove that

$$(e \otimes b) \star (\alpha \diamond ((a \otimes e) \cdot x - x \cdot (a \otimes e))) = ((e \otimes b) \cdot \alpha) \star ((a \otimes e) \cdot x - x \cdot (a \otimes e)).$$

A. Sahleh et al.

We have

$$(e \otimes b) \star (\alpha \diamond ((a \otimes e) \cdot x - x \cdot (a \otimes e))) = (e \otimes b) \star ((\alpha \cdot a \otimes e) \cdot x - x \cdot (\alpha \cdot a \otimes e))$$

$$= (\alpha \cdot a \otimes e) \cdot ((e \otimes b) \cdot x)$$

$$- ((e \otimes b) \cdot x) \cdot (\alpha \cdot a \otimes e)$$

$$= (\alpha \cdot (a \otimes e)) \cdot ((e \otimes b) \cdot x)$$

$$- ((e \otimes b) \cdot x) \cdot (\alpha \cdot (a \otimes e))$$

$$= \alpha \cdot ((a \otimes e) \cdot ((e \otimes b) \cdot x))$$

$$- (((e \otimes b) \cdot x) \cdot \alpha) \cdot (a \otimes e)$$

$$= ((a \otimes e) \cdot ((e \otimes b) \cdot x)) \cdot \alpha$$

$$- ((e \otimes b) \cdot (x \cdot \alpha)) \cdot (a \otimes e)$$

$$= (a \otimes e) \cdot ((e \otimes b) \cdot (\alpha \cdot x))$$

$$- (((e \otimes b) \cdot \alpha) \cdot x) \cdot (a \otimes e)$$

$$= (a \otimes e) \cdot (((e \otimes b) \cdot \alpha) \cdot x)$$

$$- (((e \otimes b) \cdot \alpha) \cdot x) \cdot (a \otimes e)$$

$$= (a \otimes e) \cdot (((e \otimes b) \cdot \alpha) \cdot x)$$

$$- (((e \otimes b) \cdot \alpha) \cdot x) \cdot (a \otimes e)$$

Step 3. Finally, we show that

$$(\alpha \diamond ((a \otimes e) \cdot x - x \cdot (a \otimes e))) \star (e \otimes b) = \alpha \diamond (((a \otimes e) \cdot x - x \cdot (a \otimes e)) \star (e \otimes b)).$$

$$(\alpha \diamond ((a \otimes e) \cdot x - x \cdot (a \otimes e))) \star (e \otimes b) = ((\alpha \cdot a \otimes e) \cdot x$$

$$- x \cdot (\alpha \cdot a \otimes e)) \star (e \otimes b)$$

$$= (\alpha \cdot a \otimes e) \cdot (x \cdot (e \otimes b))$$

$$- (x \cdot (e \otimes b)) \cdot (\alpha \cdot a \otimes e).$$

Similarly for the right and two sided actions, these relations are correct. For each $a, b \in \mathcal{A}$ and $x \in X$ we have

$$\tilde{\tilde{D}}(e \otimes b)((a \otimes e) \cdot x - x \cdot (a \otimes e)) = (\tilde{\tilde{D}}(e \otimes b) \cdot (a \otimes e) - (a \otimes e) \cdot \tilde{\tilde{D}}(e \otimes b))(x).$$

Since $\tilde{\tilde{D}}|_{\hat{\mathcal{A}}\hat{\otimes}e} = 0$,

$$\tilde{\tilde{D}}(a \otimes b) = (a \otimes e) \cdot \tilde{\tilde{D}}(e \otimes b) = \tilde{\tilde{D}}(e \otimes b) \cdot (a \otimes e).$$

Therefore $\tilde{\tilde{D}}(e\hat{\otimes}\mathcal{A}) \subseteq F^{\perp} = (X/F)^*$ and $\tilde{\tilde{D}}|e\hat{\otimes}\mathcal{A}: e\hat{\otimes}\mathcal{A} \to (X/F)^*$ is a module derivation. By the previous lemma, there exists $f^* \in F^{\perp}$ Such that $\tilde{\tilde{D}}|_{e\hat{\otimes}\mathcal{A}} = \delta_{f^*}$. Then we have $D - \delta_{x^*}|_{e\hat{\otimes}\mathcal{A}} = \delta_{f^*}$. Since $\delta_{f^*}|_{\mathcal{A}\hat{\otimes}e} = 0$, $D - \delta_{x^*} = \delta_{f^*}$ and proof is complete.

Corollary 3.3. Let \mathcal{A} be a \mathcal{U} -module and \mathcal{A}/J has a unit. Then $\mathcal{A}/J \hat{\otimes} \mathcal{A}/J$ is module amenable.

References

- [1] M. Amini, Module amenability for semigroup algebras, *Semigroup Forum*, 69(2004), 243-254.
- [2] A. Bodaghi, Module amenability and tensor product of semigroup algebra, Journal of Mathematical Extension, 2(2010), 97-106.
- [3] H.G. Dales, Banach Algebras and Automatic Continuity, Oxford University Press, Oxford, (2000).
- [4] B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc, 127(1972), 1-96.
- [5] M.A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, *J. Func. Analysis*, 1(1967), 443-491.