

Gen. Math. Notes, Vol. 29, No. 1, July 2015, pp.6-21 ISSN 2219-7184; Copyright ©ICSRS Publication, 2015 www.i-csrs.org
Available free online at http://www.geman.in

Coefficient Estimates for λ -Bazilevič Functions of Bi-univalent Functions

Shuhai Li¹, Lina Ma² and Huo Tang³

^{1,2,3}School of Mathematics and Statistics, Chifeng University Chifeng 024001, Inner Mongolia, China

> ¹E-mail: lishms66@sina.com ²E-mail: malina00@163.com ³E-mail: thth2009@163.com

(Received: 26-5-15 / Accepted: 28-6-15)

Abstract

In this paper, we introduce two new subclasses of the function class Σ of λ -Bazilevič functions of bi-univalent functions defined in the open unit disc. We find estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in these new subclasses. The results presented in this paper would generalize some recent works of Xu et al. and Ali et al.

Keywords: Analytic functions, Univalent functions, Bazilevič functions, Bi-univalent functions, Coefficient estimates.

1 Introduction

Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \tag{1}$$

which are analytic in the open unit disc $U = \{z \in C : |z| < 1\}$. We also denote by \mathcal{S} the subclass of the normalized analytic function class \mathcal{A} consisting of all functions in \mathcal{A} which are also univalent in U (see [1-4]). Familiar subclasses of starlike functions of order ξ (0 $\leq \xi < 1$) and convex functions of order ξ for

which either of the quantity

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \xi \text{ and } \Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \xi.$$

The class consisting these two functions are given by $\mathcal{S}^*(\xi)$ and $\mathcal{K}(\xi)$, respectively. For a constant $\beta \in (-\pi/2, \pi/2)$, a function f is univalent on U and satisfies the condition that $\Re\{e^{i\theta}zf'(z)/f(z)\}>0$ in U. We denote this class by $\mathcal{T}\mathcal{S}^*(\text{see }[2])$.

It is well known that every function $f(z) \in \mathcal{S}$ has an inverse f^{-1} , which is defined by

$$f^{-1}(f(z)) = z \quad (z \in U)$$

and

$$f(f^{-1}(\omega)) = \omega, \quad (|\omega| < r_0(f), r_0(f) \ge \frac{1}{4}).$$

In fact, the inverse function is given by

$$f^{-1}(\omega) = \omega - a_2\omega^2 + (2a_2^2 - a_3)\omega^3 - (5a_2^3 - 5a_2a_3 + a_4)\omega^4 + \cdots$$
 (2)

A function $f \in \mathcal{S}$ is bi-univalent in U if both f and f^{-1} are univalent in U. We denote by Σ the class of all bi-univalent functions in U given by the Taylor-Maclaurin series expansion (1). Lewin [5] investigated the class Σ of bi-univalent functions and obtained the bound for the second coefficient. Several authors have subsequently studied similar problems in this direction (see [6]). Srivastava et al.[7], and Frasin and Aouf [8] introduced subclasses of bi-univalent functions and obtained bounds for the initial coefficients. Recently, Xu et al. [9], Goyal and Goswami [10] and Ali et al.[11] introduced and investigated subclasses of bi-univalent functions and obtained bounds for the initial coefficients.

Let f and g be analytic functions in U, we say that f is subordinate to g, written as $f(z) \prec g(z)$ if there exists a Schwarz function $\omega(z)$ in U, with $\omega(0) = 0$ and $|\omega(z)| < 1(z \in U)$, such that $f(z) = g(\omega(z))$. In particular, when g is univalent, then the above subordination is equivalent to f(0) = 0 and $f(U) \subseteq g(U)$.

Let

$$H(U) = \{h : U \to C, \Re\{h(z)\} > 0 \text{ and } h(0) = 1, h(\overline{z}) = \overline{h(z)}(z \in U)\}.$$

Assume that φ is an analytic univalent function with positive part in U, $\varphi(U)$ is symmetric with respect to the real axis and starlike with respect to $\varphi(0) = 1$, and $\varphi'(0) > 0$. Such a function has series expansion of the form

$$\varphi(z) = 1 + B_1 z + B_2 z^2 + \cdots, \quad (B_1 > 0).$$
 (3)

Obviously, $\varphi(U) \subseteq H(U)$.

Wang et al.[13] (also see Li [14]) introduced and investigated the class of λ -Bazilevič functions consists of functions $f \in \mathcal{A}$ satisfying the subordination:

$$(1-\lambda)\frac{zf'(z)}{f(z)}\left(\frac{f(z)}{g(z)}\right)^{\alpha+i\mu} + \lambda\left(1 + \frac{zf''(z)}{f'(z)}\right)\left(\frac{f'(z)}{g'(z)}\right)^{\alpha+i\mu} \prec \frac{1+Az}{1+Bz}$$

$$(\alpha \geq 0, \lambda \geq 0, \mu, A, B \in R \ \text{ and } \ A \neq B, -1 \leq B \leq 1; g \in S^*(\xi)).$$

In this paper, using the subordination, we introduce the following two classes of λ -Bazilevič functions of bi-univalent functions.

Definition 1.1 Let the function f(z), defined by (1), be in the analytic function class A. We say that $f(z) \in U^{p,q}_{\alpha}(\beta,b,\lambda)$ if the following conditions are satisfied:

$$f(z) \in \Sigma$$

and

$$\left\{ \frac{e^{i\beta}}{\cos\beta} \left[1 + \frac{1}{b} \left((1 - \lambda) \frac{zf'(z)}{f(z)} \left(\frac{f(z)}{z} \right)^{\alpha} + \lambda \left(1 + \frac{zf''(z)}{f'(z)} \right) (f'(z))^{\alpha} - 1 \right) \right] - i \tan\beta \right\} \in p(U)$$
(4)

and

$$\left\{ \frac{e^{i\beta}}{\cos\beta} \left[1 + \frac{1}{b} \left((1 - \lambda) \frac{\omega g'(\omega)}{g(\omega)} \left(\frac{g(\omega)}{\omega} \right)^{\alpha} + \lambda \left(1 + \frac{\omega g''(\omega)}{g'(\omega)} \right) (g'(\omega))^{\alpha} - 1 \right) \right] - i \tan\beta \right\} \in q(U)$$

$$(p(z), q(\omega) \in H(U); z, \omega \in U)$$

$$(5)$$

where $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2}); b \in C \setminus \{0\}; \alpha \geq 0, \lambda \geq 0; n \in N_0$, the function $g(\omega) = f^{-1}(\omega)$ is given by (2).

Definition 1.2 Let the function f(z) of the form (1), be in the analytic function class A. We say that $f(z) \in L^{\varphi}_{\alpha}(\beta, b, \lambda)$ if the following conditions are satisfied:

$$f(z) \in \Sigma$$

$$\frac{e^{i\beta}}{\cos\beta} \left[1 + \frac{1}{b} \left((1-\lambda) \frac{zf'(z)}{f(z)} \left(\frac{f(z)}{z} \right)^{\alpha} + \lambda (1 + \frac{zf''(z)}{f'(z)}) (f'(z))^{\alpha} - 1 \right) \right] -i \tan\beta \prec \varphi(z)$$

and

$$\frac{e^{i\beta}}{\cos\beta} \left[1 + \frac{1}{b} \left((1 - \lambda) \frac{\omega g'(\omega)}{g(\omega)} (\frac{g(\omega)}{\omega})^{\alpha} + \lambda (1 + \frac{\omega g''(\omega)}{g'(\omega)}) (g'(\omega))^{\alpha} - 1 \right) \right] -i \tan\beta \prec \varphi(\omega)$$

$$(g(\omega) = f^{-1}(\omega); z, \omega \in U).$$

For $f(z) \in L^{\varphi}_{\alpha}(\beta, b, \lambda)$ and $\varphi = (\frac{1+z}{1-z})^{\eta}(0 < \eta \le 1)$, Definition 1.1 readily yields the following class $B^{\eta}_{\alpha}(\beta, b, \lambda)$ satisfying:

$$f(z) \in \Sigma$$

and

$$\left|\arg\frac{e^{i\beta}}{\cos\beta}\left[1+\frac{1}{b}\left((1-\lambda)\frac{zf'(z)}{f(z)}(\frac{f(z)}{z})^{\alpha}+\lambda(1+\frac{zf''(z)}{f'(z)})(f'(z))^{\alpha}-1\right)\right]\right|<\frac{\eta\pi}{2}$$

and

$$\left|\arg\frac{e^{i\beta}}{\cos\beta}\left[1+\frac{1}{b}\left((1-\lambda)\frac{\omega g'(\omega)}{g(\omega)}(\frac{g(\omega)}{\omega})^{\alpha}+\lambda(1+\frac{\omega g''(\omega)}{g'(\omega)})(g'(\omega))^{\alpha}-1\right)\right]\right|<\frac{\eta\pi}{2}$$

$$(g(\omega) = f^{-1}(\omega); 0 < \eta \le 1; z, \omega \in U)$$

For $f(z) \in L^{\varphi}_{\alpha}(\beta, b, \lambda)$ and $\varphi = (\frac{1+Az}{1+Bz})(-1 \le B < A \le 1)$, Definition 1.2 readily yields the following class $L^{A,B}_{\alpha}(\beta, b, \lambda)$ satisfying:

$$f(z) \in \Sigma$$

and

$$\frac{e^{i\beta}}{\cos\beta} \left[1 + \frac{1}{b} \left((1-\lambda) \frac{zf'(z)}{f(z)} \left(\frac{f(z)}{z} \right)^{\alpha} + \lambda (1 + \frac{zf''(z)}{f'(z)}) (f'(z))^{\alpha} - 1 \right) \right]$$
$$-i\tan\beta \prec \frac{1 + Az}{1 + Bz}$$

$$\frac{e^{i\beta}}{\cos\beta} \left[1 + \frac{1}{b} \left((1 - \lambda) \frac{\omega g'(\omega)}{g(\omega)} (\frac{g(\omega)}{\omega})^{\alpha} + \lambda (1 + \frac{\omega g''(\omega)}{g'(\omega)}) (g'(\omega))^{\alpha} - 1 \right) \right]$$
$$-i \tan\beta \prec \frac{1 + A\omega}{1 + B\omega}$$
$$(g(\omega) = f^{-1}(\omega); z, \omega \in U).$$

For suitable choices of p, q and by specializing the parameters $b, \lambda, \alpha, \eta, \beta$ involved in the class $U^{p,q}_{\alpha}(\beta,b,\lambda)$, $L^{\varphi}_{\alpha}(\beta,b,\lambda)$ and $B^{\eta}_{\alpha}(\beta,b,\lambda)$, we also obtain the following subclasses which were studied in many earlier works:

- $(1)S_{\Sigma}(\xi) = L_0^{1-2\xi,-1}(0,1,0)$ (Bi-Starlike function)(Brannan and Taha [6]); $(2)K_{\Sigma}(\xi) = L_0^{1-2\xi,-1}(0,1,1)$ (Bi-Starlike function)(Brannan and Taha [6]);
- $(3)U(p,q) = U_1^{p,q}(0,1,0)$ (Xu et al. [9]);
- $(4)M_{\Sigma}(p,\lambda) = U_0^{p,p}(0,1,\lambda)$ (General Bi-Mocanu-convex function of Ma-Minda) (Ali et al.[11]);
 - $(5)B_{\Sigma}(\alpha,\varphi)=L_{\alpha}^{\varphi}(0,1,0)$ (Bi-Bazilevič functions of Ma-Minda type [16]).

In this paper, estimates on the initial coefficients for class $U^{p,q}_{\alpha}(\beta,b,\lambda)$, $L^{\varphi}_{\alpha}(\beta,b,\lambda)$ and $B^{\eta}_{\alpha}(\beta,b,\lambda)$ are obtained. Several related classes are also considered, and a connection to earlier known results is made.

2 Coefficient Bounds for the Function Class $U^{p,q}_{\alpha}(\beta,b,\lambda)$

Theorem 2.1 Suppose that $f(z) \in \mathcal{A}$ of the form (1), be in the class $U^{p,q}_{\alpha}(\beta,b,\lambda)$. Then

$$|a_2| \le \min \left\{ \frac{|b|\cos\beta\sqrt{|p'(0)|^2 + |q'(0)|^2}}{(\alpha+1)(\lambda+1)}, \sqrt{\frac{(|p''(0)| + |q''(0)|)|b|\cos\beta}{2(\alpha+2)[\lambda+\alpha(1+3\lambda)+1]}} \right\}$$
(6)

and

$$|a_{3}| \leq \min \left\{ \frac{(|p''(0)| + |q''(0)|)|b|\cos\beta}{4(\alpha + 2)(2\lambda + 1)} + \frac{|b|^{2}\cos^{2}\beta(|p'(0)|^{2} + |q'(0)|^{2})}{2(\alpha + 1)^{2}(\lambda + 1)^{2}}, \frac{|b|\cos\beta}{4(\alpha + 2)} \cdot \frac{|p''(0)|[5\lambda + \alpha(3\lambda + 1) + 3] + |q''(0)|(3\lambda + 1)|1 - \alpha|}{(2\lambda + 1)[\lambda + \alpha(3\lambda + 1) + 1]} \right\}.$$

$$(7)$$

Proof. It follows from the conditions (4) and (5) that

$$e^{i\beta} \left\{ 1 + \frac{1}{b} \left[(1 - \lambda) \frac{zf'(z)}{f(z)} \left(\frac{f(z)}{z} \right)^{\alpha} + \lambda \left(1 + \frac{zf''(z)}{f'(z)} \right) (f'(z))^{\alpha} - 1 \right] \right\}$$

$$= p(z) \cos \beta + i \sin \beta$$
(8)

$$e^{i\beta} \left\{ 1 + \frac{1}{b} \left[(1 - \lambda) \frac{\omega g'(\omega)}{g(\omega)} (\frac{g(\omega)}{\omega})^{\alpha} + \lambda (1 + \frac{\omega g''(\omega)}{g'(\omega)}) (g'(\omega))^{\alpha} - 1 \right] \right\}$$

$$= q(\omega)\cos\beta + i\sin\beta,\tag{9}$$

where $p(z) \in H(U), q(\omega) \in H(U)$. Furthermore, the functions p(z) and $q(\omega)$ have the following series expansions

$$p(z) = 1 + p_1 z + p_2 z^2 + \dots, p_m = \frac{p^{(m)}(0)}{m!} \quad (m \in \mathbb{N})$$
 (10)

and

$$q(\omega) = 1 + q_1\omega + q_2\omega^2 + \dots, q_m = \frac{q^{(m)}(0)}{m!} \quad (m \in N)$$
 (11)

respectively. Now, in view of the series expansions (10) and (11), by equating the coefficients in (8) and (9), we get

$$\frac{e^{i\beta}}{b} \left[(\alpha + 1)(\lambda + 1) \right] a_2 = p_1 \cos \beta, \tag{12}$$

$$\frac{e^{i\beta}}{b} \left[(\alpha + 2)(2\lambda + 1)a_3 + \frac{(\alpha - 1)(\alpha + 2)(3\lambda + 1)}{2} a_2^2 \right] = p_2 \cos \beta, \tag{13}$$

$$-\frac{e^{i\beta}}{b}\left[(\alpha+1)(\lambda+1)\right]a_2 = q_1\cos\beta,\tag{14}$$

and

$$\frac{e^{i\beta}}{b} \left[(\alpha + 2)(2\lambda + 1)(2a_2^2 - a_3) + \frac{(\alpha - 1)(\alpha + 2)(3\lambda + 1)}{2} a_2^2 \right] = q_2 \cos \beta. \quad (15)$$

We find from (12) and (14) that

$$p_1 = -q_1 \tag{16}$$

and

$$2e^{i2\beta} \left[\frac{(\alpha+1)(\lambda+1)}{b} \right]^2 a_2^2 = (p_1^2 + q_1^2) \cos^2 \beta.$$
 (17)

Also, from (13) and (15), we obtain

$$\frac{e^{i\beta}}{b}(\alpha+2)[\lambda+\alpha(3\lambda+1)+1]a_2^2 = (p_2+q_2)\cos\beta.$$
 (18)

Therefore, we find from (17) and (18) that

$$a_2^2 = \frac{(p_1^2 + q_1^2)b^2\cos^2\beta}{2e^{2i\beta}(\alpha + 1)^2(\lambda + 1)^2}$$
(19)

$$a_2^2 = \frac{(p_2 + q_2)b\cos\beta}{e^{i\beta}(\alpha + 2)[\lambda + \alpha(3\lambda + 1) + 1]}.$$
 (20)

12

Since $p_1 = p'(0), p_2 = \frac{p''(0)}{2}, q_1 = q'(0), q_2 = \frac{q''(0)}{2}$, it follows from (19) and (20) that

$$|a_2| \le \frac{|b|\cos\beta\sqrt{|p'(0)|^2 + |q'(0)|^2}}{(\alpha+1)(\lambda+1)}$$

and

$$|a_2| \le \sqrt{\frac{(|p''(0)| + |q''(0)|)|b|\cos\beta}{2(\alpha+2)[\lambda+\alpha(1+3\lambda)+1]}},$$

which gives us the desired estimate on $|a_2|$ as asserted in (6).

Next, in order to find the bound on $|a_3|$, by subtracting (13) from (15), we get

$$\frac{e^{i\beta}}{b} \left[2(\alpha + 2)(2\lambda + 1) \right] (a_3 - a_2^2) = (p_2 - q_2)\cos\beta. \tag{21}$$

Thus, upon substituting the value of a_2^2 from (16) and (19) into (21), it follows that

$$a_3 = \frac{(p_2 - q_2)b\cos\beta}{2e^{i\beta}(\alpha + 2)(2\lambda + 1)} + \frac{b^2\cos^2\beta(p_1^2 + q_1^2)}{2e^{2i\beta}(\alpha + 1)^2(\lambda + 1)^2},$$

which yields

$$|a_3| \le \frac{(|p''(0)| + |q''(0)|)|b|\cos\beta}{4(\alpha + 2)(2\lambda + 1)} + \frac{|b|^2\cos^2\beta(|p'(0)|^2 + |q'(0)|^2)}{(\alpha + 1)^2(\lambda + 1)^2}.$$

On the other hand, by using (16) and (10) in (21), we obtain

$$a_3 = \frac{b \cos \beta}{2e^{i\beta}(\alpha + 2)} \cdot \frac{[5\lambda + \alpha(1 + 3\lambda) + 3]p_2 + (3\lambda + 1)(1 - \alpha)q_2}{(2\lambda + 1)[\lambda + \alpha(1 + 3\lambda) + 1]},$$

it follows that

$$|a_3| \le \frac{|b|\cos\beta}{4(\alpha+2)} \cdot \frac{[5\lambda + \alpha(1+3\lambda) + 3]|p''(0)| + (3\lambda+1)|1 - \alpha||q''(0)|}{(2\lambda+1)[\lambda + \alpha(1+3\lambda) + 1]}.$$

This completes the proof of Theorem 2.1.

For $b = 1, \beta = 0$, Theorem 2.1 readily yields the following coefficient estimates for $U_{\alpha}^{p,q}(0,1,\lambda)$.

Corollary 2.2 Suppose that $f(z) \in \mathcal{A}$ of the form (1), be in the class $U^{p,q}_{\alpha}(0,1,\lambda)$. Then

$$|a_2| \le \min \left\{ \frac{\sqrt{|p'(0)|^2 + |q'(0)|^2}}{(\alpha+1)(\lambda+1)}, \sqrt{\frac{|p''(0)| + |q''(0)|}{2(\alpha+2)[\lambda+\alpha(3\lambda+1)+1]}} \right\}$$

$$|a_3| \le \min \left\{ \frac{|p''(0)| + |q''(0)|}{4(\alpha + 2)(2\lambda + 1)} + \frac{(|p'(0)|^2 + |q'(0)|^2)}{2(\alpha + 1)^2(\lambda + 1)^2}, \frac{|p''(0)|[5\lambda + \alpha(3\lambda + 1) + 3] + |q''(0)|(3\lambda + 1)|1 - \alpha|}{4(\alpha + 2)(2\lambda + 1)[\lambda + \alpha(3\lambda + 1) + 1]} \right\}.$$

For $b = 1, \beta = 0, \alpha = 0, \lambda = 0$, we obtain the results in [15] by S. Bulut. For $b = 1, \beta = 0, \alpha = 1, \lambda = 0$, Theorem 2.1 readily improve coefficient estimates for U(p,q) in [9] as follows.

Corollary 2.3 Suppose that $f(z) \in A$ of the form (1), be in the class U(p,q). Then

$$|a_2| \le \min \left\{ \frac{|p'(0)|}{2}, \sqrt{\frac{|p''(0)| + |q''(0)|}{12}} \right\}$$

and

$$|a_3| \le \min \left\{ \frac{|p''(0)| + |q''(0)|}{12} + \frac{(p'(0))^2}{4}, \frac{|p''(0)|}{6} \right\}.$$

3 Coefficient Bounds for the Function Class $L^{\varphi}_{\alpha}(\beta, b, \lambda)$ and $B^{\eta}_{\alpha}(\beta, b, \lambda)$

In order to prove our main results, we first recall the following lemmas.

Lemma 3.1 (see [12]) If $p(z) \in \mathcal{P}$, then $|p_k| \leq 2$ for each k, where \mathcal{P} is the family of all functions p(z) analytic in U for which $\Re\{p(z)\} > 0$, $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ for $z \in U$.

Theorem 3.2 Suppose that $f(z) \in \mathcal{A}$ of the form (1), be in the class $L^{\varphi}_{\alpha}(\beta, b, \lambda)$. Then

$$|a_{2}| \leq \min \left\{ \frac{|B_{1}||b|\cos\beta}{(\alpha+1)(\lambda+1)}, \sqrt{\frac{2|b|\cos\beta(|B_{1}|+|B_{2}-B_{1}|)}{(\alpha+2)[\lambda+\alpha(3\lambda+1)+1]}}, \frac{|B_{1}|\sqrt{2|B_{1}|}|b|\cos\beta}{\sqrt{|B_{1}^{2}b\cos\beta(\alpha+2)[\lambda+\alpha(3\lambda+1)+1] - 2(B_{2}-B_{1})e^{i\beta}(\alpha+1)^{2}(\lambda+1)^{2}|}} \right\}$$
(22)

and

$$|a_3| \le \min \left\{ \frac{|B_1||b|\cos\beta}{(\alpha+2)(2\lambda+1)} + \frac{|B_1|^2|b|^2\cos^2\beta}{(\alpha+1)^2(\lambda+1)^2}, Q_1, Q_2 \right\}, \tag{23}$$

where

$$Q_{1} = \frac{|b|\cos\beta\{[5\lambda + (\alpha + |1 - \alpha|)(1 + 3\lambda) + 3]|B_{1}| + 4(2\lambda + 1)|B_{2} - B_{1}|\}}{2(\alpha + 2)(2\lambda + 1)[\lambda + \alpha(3\lambda + 1) + 1]},$$

$$Q_{2} = \frac{|B_{1}b|\{B_{1}^{2}|b|\cos\beta(\alpha + 2)[5\lambda + (\alpha + |1 - \alpha|)(3\lambda + 1) + 3] + Q_{3}\}}{2(\alpha + 2)(2\lambda + 1)|B_{1}^{2}b(\alpha + 2)[\lambda + \alpha(3\lambda + 1) + 1] - Q_{4}|},$$

$$Q_{3} = 4|B_{2} - B_{1}|(\alpha + 1)^{2}(\lambda + 1)^{2}$$

$$Q_4 = 2(B_2 - B_1)(1 + i \tan \beta)(1 + \alpha)^2(1 + \lambda)^2.$$

Proof. Let $f \in L^{\varphi}_{\alpha}(\beta, b, \lambda)$, consider the analytic functions $u, v : U \longrightarrow U$, with u(0) = v(0) = 0, such that

$$e^{i\beta} \left\{ 1 + \frac{1}{b} \left[(1 - \lambda) \frac{zf'(z)}{f(z)} (\frac{f(z)}{z})^{\alpha} + \lambda (1 + \frac{zf''(z)}{f'(z)}) (f'(z))^{\alpha} - 1 \right] \right\}$$

$$= \varphi(u(z)) \cos \beta + i \sin \beta \tag{24}$$

and

$$e^{i\beta} \left\{ 1 + \frac{1}{b} \left[(1 - \lambda) \frac{\omega g'(\omega)}{g(\omega)} (\frac{g(\omega)}{\omega})^{\alpha} + \lambda (1 + \frac{\omega g''(\omega)}{g'(\omega)}) (g'(\omega))^{\alpha} - 1 \right] \right\}$$

$$= \varphi(v(\omega)) \cos \beta + i \sin \beta, \tag{25}$$

where $g := f^{-1}$.

Define the function m and n by

$$m(z) = \frac{1 + u(z)}{1 - u(z)} = 1 + m_1 z + m_2 z^2 + \cdots,$$

and

$$n(z) = \frac{1 + v(z)}{1 - v(z)} = 1 + n_1 z + n_2 z^2 + \cdots,$$

it follows that

$$u(z) = \frac{m(z) - 1}{m(z) + 1} = \frac{m_1}{2}z + \frac{1}{2}(m_2 - \frac{m_1^2}{2})z^2 + \cdots$$
 (26)

and

$$v(z) = \frac{n(z) - 1}{n(z) + 1} = \frac{n_1}{2}z + \frac{1}{2}(n_2 - \frac{n_1^2}{2})z^2 + \cdots$$
 (27)

It is clear that m and n are analytic in U and m(0) = n(0) = 1. Since $u, v : U \longrightarrow U$, the function m and n have positive real part in U, by virtue of Lemma 3.1, we have $|m_i| \leq 2$ and $|n_i| \leq 2$ $(i = 1, 2, \cdots)$.

From (24),(25),(26) and (27), it follows that

$$e^{i\beta} \left\{ 1 + \frac{1}{b} \left[(1 - \lambda) \frac{zf'(z)}{f(z)} (\frac{f(z)}{z})^{\alpha} + \lambda (1 + \frac{zf''(z)}{f'(z)}) (f'(z))^{\alpha} - 1 \right] \right\}$$

$$= \varphi \left(\frac{m(z) - 1}{m(z) + 1} \right) \cos \beta + i \sin \beta$$
(28)

$$e^{i\beta} \left\{ 1 + \frac{1}{b} \left[(1 - \lambda) \frac{\omega g'(\omega)}{g(\omega)} (\frac{g(\omega)}{\omega})^{\alpha} + \lambda (1 + \frac{\omega g''(\omega)}{g'(\omega)}) (g'(\omega))^{\alpha} - 1 \right] \right\}$$

$$= \varphi(\frac{n(\omega) - 1}{n(\omega) + 1})\cos\beta + i\sin\beta. \tag{29}$$

According to (3), it is evident that

$$\varphi(u(z)) = 1 + \frac{m_1 B_1}{2} z + (\frac{m_2 B_1}{2} + \frac{m_1^2 (B_2 - B_1)}{4}) z^2 + \cdots$$

and

$$\varphi(v(\omega)) = 1 + \frac{n_1 B_1}{2} \omega + (\frac{n_2 B_1}{2} + \frac{n_1^2 (B_2 - B_1)}{4}) \omega^2 + \cdots$$

Since

$$e^{i\beta} \left\{ 1 + \frac{1}{b} \left[(1 - \lambda) \frac{zf'(z)}{f(z)} (\frac{f(z)}{z})^{\alpha} + \lambda (1 + \frac{zf''(z)}{f'(z)}) (f'(z))^{\alpha} - 1 \right] \right\}$$

$$= e^{i\beta} + \frac{e^{i\beta} (\alpha + 1)(\lambda + 1)}{b} a_2 z + \frac{e^{i\beta}}{b} \left[(\alpha + 2)(2\lambda + 1)a_3 + \frac{(\alpha - 1)(\alpha + 2)(3\lambda + 1)}{2} a_2^2 \right] z^2 + \cdots$$

and

$$e^{i\beta} \left\{ 1 + \frac{1}{b} \left[(1 - \lambda) \frac{\omega g'(z)}{g(z)} (\frac{g(\omega)}{\omega})^{\alpha} + \lambda (1 + \frac{\omega g''(\omega)}{g'(\omega)}) (g'(\omega))^{\alpha} - 1 \right] \right\}$$

$$= e^{i\beta} - \frac{e^{i\beta} (\alpha + 1)(\lambda + 1)}{b} a_2 \omega + \frac{e^{i\beta}}{b} \left[(\alpha + 2)(2\lambda + 1)(2a_2^2 - a_3) + \frac{(\alpha - 1)(\alpha + 2)(3\lambda + 1)}{2} a_2^2 \right] \omega^2 + \cdots$$

By equating the coefficients in (28) and (29), we get

$$\frac{e^{i\beta}(\alpha+1)(\lambda+1)}{b\cos\beta}a_2 = \frac{m_1B_1}{2},\tag{30}$$

$$\frac{e^{i\beta}}{b\cos\beta} [(\alpha+2)(1+2\lambda)a_3 + \frac{(\alpha-1)(\alpha+2)(1+3\lambda)}{2}a_2^2]
= \frac{m_2B_1}{2} + \frac{m_1^2(B_2 - B_1)}{4}$$
(31)

$$-\frac{e^{i\beta}(\alpha+1)(\lambda+1)}{b\cos\beta}a_2 = \frac{n_1B_1}{2},\tag{32}$$

$$\frac{e^{i\beta}}{b\cos\beta}[(\alpha+2)(2\lambda+1)(a_2^2-a_3)+\frac{(\alpha-1)(\alpha+2)(3\lambda+1)}{2}a_2^2]$$

$$=\frac{n_2B_1}{2} + \frac{n_1^2(B_2 - B_1)}{4} \tag{33}$$

We find from (30) and (32) that

$$m_1 = -n_1 \tag{34}$$

and

$$\frac{2e^{2i\beta}(\alpha+1)^2(\lambda+1)^2}{b^2\cos^2\beta}a_2^2 = \frac{B_1^2}{4}(m_1^2 + n_1^2). \tag{35}$$

Also, from (31) and (33), we obtain

$$\frac{e^{i\beta}}{b\cos\beta}(\alpha+2)[\lambda+\alpha(1+3\lambda)+1]a_2^2 = \frac{(m_2+n_2)B_1}{2} + \frac{(B_2-B_1)(m_1^2+n_1^2)}{4}$$
 (36)

From (35) and (36), we have

$$a_2^2 = \frac{(m_2 + n_2)B_1^3 b^2 \cos^2 \beta}{2be^{i\beta}B_1^2 \cos \beta(\alpha + 2)[\lambda + \alpha(3\lambda + 1) + 1] - 4(B_2 - B_1)e^{2i\beta}(\alpha + 1)^2(\lambda + 1)^2}$$
(37)

Since $|m_i| \leq 2$ and $|n_i| \leq 2$ (i = 1, 2), it follows from (35), (36) and (37) that

$$|a_2| \le \frac{|B_1||b|\cos\beta}{(\alpha+1)(1+\lambda)},$$

$$|a_2| \le \sqrt{\frac{2|b|\cos\beta(|B_1| + |B_2 - B_1|)}{(\alpha + 2)[1 + \lambda + \alpha(1 + 3\lambda)]}},$$

and

$$|a_2| \le \frac{|B_1|\sqrt{2|B_1|}|b|\cos\beta}{\sqrt{|B_1^2b\cos\beta(\alpha+2)[1+\lambda+\alpha(1+3\lambda)] - 2(B_2 - B_1)e^{i\beta}(1+\alpha)^2(1+\lambda)^2|}},$$

which yields the desired estimate on $|a_2|$ as asserted in (22).

Next, in order to find the bound on $|a_3|$, by subtracting (31) from (33), we get

$$\frac{2e^{i\beta}}{b\cos\beta}(\alpha+2)(2\lambda+1)(a_3-a_2^2) = \frac{(m_2-n_2)B_1}{2}$$
 (38)

Substituting value of a_2^2 from (35), (36) and (37) in (38), we get

$$a_3 = \frac{(m_2 - n_2)B_1b\cos\beta}{4e^{i\beta}(\alpha + 2)(2\lambda + 1)} + \frac{B_1^2b^2\cos^2\beta(m_1^2 + n_1^2)}{8e^{2i\beta}(\alpha + 1)^2(\lambda + 1)^2},$$
(39)

$$a_3 = \frac{b\cos\beta\{([5\lambda + \alpha(3\lambda + 1) + 3]m_2 + (3\lambda + 1)(1 - \alpha)n_2)B_1 + W_3\}}{4e^{i\beta}(\alpha + 2)(2\lambda + 1)[\lambda + \alpha(1 + 3\lambda) + 1]}$$
(40)

and

$$a_3 = \frac{B_1 b \cos \beta (W_1 m_2 + W_2 n_2)}{4e^{i\beta} (\alpha + 2)(2\lambda + 1) \{ B_1^2 b \cos \beta (\alpha + 2)[\lambda + \alpha(1 + 3\lambda) + 1] - W_4 \}}, \quad (41)$$

where

$$W_1 = (\alpha + 2)[5\lambda + \alpha(1+3\lambda) + 3]B_1^2b\cos\beta - 2(B_2 - B_1)e^{i\beta}(\alpha + 1)^2(\lambda + 1)^2,$$

$$W_2 = (\alpha + 2)(3\lambda + 1)(1-\alpha)B_1^2b\cos\beta + 2(B_2 - B_1)e^{i\beta}(\alpha + 1)^2(\lambda + 1)^2,$$

$$W_3 = 2(2\lambda + 1)(B_2 - B_1)m_1^2$$

and

$$W_4 = 2(B_2 - B_1)e^{i\beta}(\alpha + 1)^2(\lambda + 1)^2.$$

Using (39), (40) and (41), we have

$$|a_3| \le \frac{|B_1||b|\cos\beta}{(\alpha+2)(2\lambda+1)} + \frac{|B_1|^2|b|^2\cos^2\beta}{(\alpha+1)^2(\lambda+1)^2},\tag{42}$$

$$|a_3| \le \frac{|b|\cos\beta\{[5\lambda + (\alpha + |1 - \alpha|)(3\lambda + 1) + 3]|B_1| + 4(2\lambda + 1)|B_2 - B_1|\}}{2(\alpha + 2)(2\lambda + 1)[\lambda + \alpha(1 + 3\lambda) + 1]}$$
(43)

and

$$|a_3| \le \frac{|B_1||b|\cos\beta\{B_1^2|b|(\alpha+2)[5\lambda+(\alpha+|1-\alpha|)(3\lambda+1)+3]+W_5\}}{2(\alpha+2)(2\lambda+1)|B_1^2b(\alpha+2)[\lambda+\alpha(1+3\lambda)+1]-W_6|},$$
(44)

where

$$W_5 = 4|B_2 - B_1|(\alpha + 1)^2(\lambda + 1)^2$$

and

$$W_6 = 2(B_2 - B_1)(1 + i\tan\beta)(1 + \alpha)^2(1 + \lambda)^2.$$

From (42), (43) and (44), we obtain the desired estimate on $|a_3|$ given in (23). This is the end of Theorem 3.2.

Let $b=1, \beta=0, \lambda=0,$ Theorem 3.2 improves Theorem 2.8 in [6] by E. Deniz as follows.

Corollary 3.3 Suppose that $f \in A$ of the form (1), be in the class $B_{\Sigma}(\alpha, \varphi)$. Then

$$|a_2| \le \min \left\{ \frac{|B_1|}{\alpha + 1}, \sqrt{\frac{2(|B_1| + |B_2 - B_1)|)}{(\alpha + 2)(\alpha + 1)}}, \frac{|B_1|\sqrt{2|B_1|}}{\sqrt{|B_1^2(\alpha + 2)(\alpha + 1) - 2(B_2 - B_1)(\alpha + 1)^2|}} \right\}$$

and

$$|a_3| \le \min \left\{ \frac{|B_1|}{\alpha + 2} + \frac{|B_1|^2}{(1 + \alpha)^2}, \frac{(\alpha + |1 - \alpha| + 3)|B_1| + 4|B_2 - B_1|}{2(\alpha + 2)(\alpha + 1)}, \frac{|B_1|\{(\alpha + 2)(\alpha + |1 - \alpha| + 3)B_1^2 + 4|B_2 - B_1|(\alpha + 1)^2\}}{2(\alpha + 2)|B_1^2(\alpha + 2)(\alpha + 1) - 2(B_2 - B_1)(\alpha + 1)^2|} \right\}.$$

Also, let $b=1, \beta=0, \alpha=0$ in Theorem 3.2, we obtain the following Corollary, which improves Theorem 2.3 in [11].

Corollary 3.4 Suppose that $f(z) \in \mathcal{A}$ of the form (1), be in the class $M_{\Sigma}(\lambda, \varphi)$. Then

$$|a_2| \le \min\left\{\frac{|B_1|}{(\lambda+1)}, \sqrt{\frac{(|B_1|+|B_2-B_1|)}{(\lambda+1)}}, \frac{|B_1|\sqrt{|B_1|}}{\sqrt{|B_1^2(\lambda+1)-(B_2-B_1)(1+\lambda)^2|}}\right\}$$

and

$$|a_3| \le \min \left\{ \frac{|B_1|}{2(2\lambda+1)} + \frac{|B_1|^2}{(\lambda+1)^2}, \frac{|B_1| + |B_2 - B_1|}{\lambda+1}, \frac{|B_1|[2(2\lambda+1)B_1^2 + (\lambda+1)^2|B_2 - B_1|]}{2(2\lambda+1)(\lambda+1)|B_1^2 - (B_2 - B_1)(\lambda+1)|} \right\}.$$

By setting $\varphi(z) = (\frac{1+z}{1-z})^{\eta} \ (0 < \eta \le 1)$ in Theorem 3.2, we get the following Corollary:

Corollary 3.5 Suppose that $f(z) \in A$ of the form (1), be in the class $B^{\eta}_{\alpha}(\beta, b, \lambda)$. Then

$$|a_2| \le \min \left\{ \frac{2\eta |b| \cos \beta}{(\alpha+1)(\lambda+1)}, 2\sqrt{\frac{\eta |b| \cos \beta(2-\eta)}{(\alpha+2)[\lambda+\alpha(1+3\lambda)+1]}}, \right.$$

$$\frac{2\eta|b|\cos\beta}{\sqrt{|b\eta\cos\beta(\alpha+2)[\lambda+\alpha(3\lambda+1)+1]+e^{i\beta}(1-\eta)[(\alpha+1)^2(\lambda+1)]^2|}}\right\}$$

and

$$|a_3| \leq \min \left\{ \frac{2\eta |b| \cos \beta}{(\alpha+2)(2\lambda+1)} + \frac{4\eta^2 |b|^2 \cos^2 \beta}{(\alpha+1)^2(\lambda+1)^2}, N_{\lambda}(\alpha,\beta,\eta,b)), Q_{\lambda}(\alpha,\beta,\eta,b) \right\},$$

where

$$N_{\lambda}(\alpha, \beta, \eta, b) = \frac{\eta |b| \cos \beta}{(\alpha + 2)} \cdot \frac{[5\lambda + (\alpha + |1 - \alpha|)(3\lambda + 1) + 3] + 4(2\lambda + 1)(1 - \eta)}{(2\lambda + 1)[\lambda + \alpha(3\lambda + 1) + 1]},$$

$$Q_{\lambda}(\alpha, \beta, \eta, b) = \frac{\eta |b| \{ \eta |b| \cos \beta (\alpha + 2) [5\lambda + (\alpha + |1 - \alpha|)(3\lambda + 1) + 3] + W_7 \}}{(\alpha + 2)(2\lambda + 1) |b\eta(\alpha + 2)[\lambda + \alpha(3\lambda + 1) + 1] + W_8 |},$$

$$W_7 = 2(1 - \eta)(\alpha + 1)^2 (\lambda + 1)^2$$

and

$$W_8 = (1 - \eta)(1 + i \tan \beta)(\alpha + 1)^2(\lambda + 1)^2.$$

Especially, for $b=1, \beta=0, \alpha=0$, Corollary 3.5 readily yields the following coefficient estimates for $B_0^{\eta}(0,1,\lambda)$,

Corollary 3.6 Suppose that $f(z) \in A$ of the form (1), be in the class $B_0^{\eta}(0,1,\lambda)$. Then

$$|a_2| \le \min \left\{ \frac{2\eta}{(\lambda+1)}, \sqrt{\frac{2\eta(2-\eta)}{(\lambda+1)}}, \frac{2\eta}{\sqrt{(\lambda+1)|2\eta + (1-\eta)(\lambda+1)|}} \right\}$$

and

$$|a_3| \le \min \left\{ \frac{\eta}{(2\lambda + 1)} + \frac{4\eta^2}{(\lambda + 1)^2}, \frac{2\eta(2 - \eta)}{(\lambda + 1)}, \frac{\eta\{4\eta(2\lambda + 1) + (1 - \eta)(\lambda + 1)^2\}}{(2\lambda + 1)(\lambda + 1)|2\eta + (1 - \eta)(\lambda + 1)|} \right\}.$$

By setting $\varphi(z) = \frac{1+(1-2\gamma)z}{1-z} (0 < \gamma \le 1)$ in Theorem 3.2, we get the following Corollary:

Corollary 3.7 Suppose that $f(z) \in \mathcal{A}$ of the form (1), be in the class $L^{1-2\gamma,-1}_{\alpha}(\beta,b,\lambda)$. Then

$$|a_2| \le \min \left\{ \frac{2(1-\gamma)|b|\cos\beta}{(\alpha+1)(\lambda+1)}, \sqrt{\frac{4|b|\cos\beta(1-\gamma)}{(\alpha+2)[\lambda+\alpha(3\lambda+1)+1]}}, \frac{2\sqrt{(1-\gamma)}}{\sqrt{|(\alpha+2)[\lambda+\alpha(1+3\lambda)+1]|}} \right\}$$

and

$$|a_3| \le \min \left\{ \frac{2(1-\gamma)|b|\cos\beta}{(\alpha+2)(2\lambda+1)} + \frac{4(1-\gamma)^2|b|^2\cos^2\beta}{(\alpha+1)^2(\lambda+1)^2}, M_1, M_2 \right\},$$

where

$$M_1 = \frac{(1-\gamma)|b|\cos\beta[5\lambda + (\alpha + |1-\alpha|)(3\lambda + 1) + 3]}{(\alpha + 2)(2\lambda + 1)[\lambda + \alpha(1+3\lambda) + 1]}$$

$$M_2 = \frac{(1-\gamma)|b|\cos\beta\{[5\lambda + (\alpha + |1-\alpha|)(3\lambda + 1) + 3]\}}{(\alpha + 2)(2\lambda + 1)|[\lambda + \alpha(3\lambda + 1) + 1]|}.$$

Especially, for $b=1, \beta=0, \alpha=1, \lambda=0$, Corollary 3.7 readily improves the result in [9].

Corollary 3.8 Suppose that $f(z) \in A$ of the form (1), be in the class $L_1^{1-2\gamma,-1}(0,1,0)$. Then

$$|a_2| \le \min\left\{ (1-\gamma), \sqrt{\frac{2(1-\gamma)}{3}} \right\}$$

and

$$|a_3| \le \min\left\{\frac{2(1-\gamma)}{3} + (1-\gamma)^2, \frac{2(1-\gamma)}{3}\right\} = \frac{2(1-\gamma)}{3}.$$

Acknowledgements: This paper was partly supported by the Natural Science Foundation of Inner Mongolia of the People's Republic of China under Grant 2014MS0101.

References

- [1] O. Altintas, H. Irmak, S. Owa and H.M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, *Appl. Math. Lett.*, 20(2007), 1218-1222.
- [2] P.L. Duren, *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften, Band 259, New York: Springer-Verlag, (1983).
- [3] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, *Proceedings of the Conference on Complex Analysis*, Tianjin, (1992), 157-169, *Conf. Proc. Lecture Notes Anal. I*, Int. Press, Cambridge, MA, (1994).
- [4] H.M. Srivastava, O. Altintas and S. KirciSerenbay, Coefficient bounds for certain subclasses of starlike functions of complex order, *Appl. Math. Lett.*, 24(2011), 1359-1363.
- [5] M. Lewin, On a coefficient problem for bi–univalent functions, *Proceedings* of the American Mathematical Society, 18(1967), 63-68.
- [6] D.A. Brannan and T.S. Taha, On some classes of bi–univalent functions, Studia Univ. Babes-Bolyai Math, 31(2) (1986), 70-77.
- [7] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi—univalent functions, *Applied Mathematical Letters*, 23(10) (2010), 1188-1192.

- [8] B.A. Frasin and M.K. Aouf, New subclasses of bi–univalent functions, *Applied Mathematical Letters*, 24(9) (2011), 1569-1573.
- [9] Q.H. Xu, Y.C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, *Applied Mathematical Letters*, 25(2012), 990-994.
- [10] S.P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi–univalent functions for a class defined by fractional derivatives, *Journal of the Egyptian Mathematical Society*, 20(2012), 179-182.
- [11] R.M. Ali, S.K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi–univalent Ma–Mindastarlike and convex functions, *Applied Mathematics Letters*, 25(2012), 344-351.
- [12] Ch. Pommerenke, *Univalent Functions*, Vandenhoeck and Rupercht, Göttingen, (1975).
- [13] Z.G. Wang, C.Y. Gao and S.M. Yuan, On certain subclass of λ -Bazilevič functions of type $\alpha+i\mu$, Tamsui Oxford Journal of Mathematical Sciences, 23(2) (2007), 141-153.
- [14] S.H. Li, Several inequalities about the $\alpha + i\mu$ type of λ -Bazilevič functions of order β , Adv. Math., 33(2004), 169-173 (in Chinese).
- [15] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, *Novi. Sad. J. Math*, 43(2) (2013), 59-65.
- [16] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, *Journal of Classical Analysis*, 2(1) (2013), 49-60.