

Gen. Math. Notes, Vol. 36, No. 1, September 2016, pp.11-21 ISSN 2219-7184; Copyright ©ICSRS Publication, 2016 www.i-csrs.org Available free online at http://www.geman.in

Modification of $\mathcal{H}(\theta)$ -Open Sets on Hereditary Generalized Topological Spaces

Ümit Karabiyik¹ and Aynur Keskin Kaymakci²

¹Department of Mathematics and Computer Science Faculty of Sciences, Necmettin Erbakan University Meram Yerleşkesi, 42090 Meram, Konya, Turkey E-mail: ukarabiyik@konya.edu.tr ²Department of Mathematics, Faculty of Sciences Selcuk University, 42031 Selcuklu, Konya, Turkey E-mail: akeskin@selcuk.edu.tr

(Received: 4-5-16 / Accepted: 21-8-16)

Abstract

We introduce the $\mathcal{H}(\theta)$ -open sets modification given by a hereditary class and a generalized topology μ and investigate some properties and characterizations. With the help of $\mathcal{H}(\theta)$ -open sets, we define new classes of sets $\mathcal{H}(\theta)$ – preopen, $\mathcal{H}(\theta)$ – semiopen, $\mathcal{H}(\theta) - \alpha$ – open, $\mathcal{H}(\theta) - \beta$ – open in hereditary generalized topological spaces and study the relation between such sets and θ – open sets on generalized topologies.

Keywords: $\mathcal{H}(\theta)$ -open sets, $\mathcal{H}(\theta)$ - pre - open, $\mathcal{H}(\theta)$ - semiopen, $\mathcal{H}(\theta)$ - α - open, $\mathcal{H}(\theta) - \beta$ - open, ideal,hereditary class, generalized topology.

1 Introduction

In 1990, Jankovic and Hamlett [5] obtained a new topology τ^* by using a given ideal \mathcal{H} and topology τ . An *ideal* \mathcal{H} on X is a nonempty family $\mathcal{H} \subseteq expX$ satisfying the following conditions (i) $A \subseteq B$, $B \in \mathcal{H}$ implies $A \in \mathcal{H}$; (ii) $A, B \in \mathcal{H}$ implies $A \cup B \in \mathcal{H}$. In 2002, A.Csaszar [1], introduced the notions of generalized topology. A.Csaszar [3] define a class of subsets of nonempty set called hereditary class and studied modification of generalized topology via hereditary classes. Instead of τ , consider a generalized topology and ideal is replaced by hereditary class, i.e. a class $\emptyset \neq \mathcal{H} \subseteq expX$ satisfying (i) he constructed the generalized topology μ^* . The aim of the paper is to extend further the study of the properties the modifications of generalized topologies via hereditary classes. In 2008, A.Csaszar [4] introduced the class of $\theta(\mu)$ -open sets. Quite recently Kim Y.K. and Min W.K. [7] have investigated their properties of $\mathcal{H}(\theta)$ -open sets in generalized topologies via hereditary class.

In this paper, with the help of $\mathcal{H}(\theta)$ -open sets, we define new classes of sets $\mathcal{H}(\theta) - preopen$, $\mathcal{H}(\theta) - semiopen$, $\mathcal{H}(\theta) - \alpha - open$, $\mathcal{H}(\theta) - \beta - open$ in generalized topologies via hereditary class. Also, we investigate some properties and relationships of these sets.

2 Preliminaries

Let X be a nonempty set and expX be the power of X. The collection μ of subset of X satisfying the following conditions is called generalized topology [2], $\emptyset \in \mu$ and $M_i \in \mu$ for $i \in I \neq \emptyset$ implies $M = \bigcup_{i \in I} M_i \in \mu$. The elements of μ are called μ -open and their compliments are called μ -closed. The pair (X, μ) is called a generalized topological spaces (GTS). For any set $A \subset X$ we define interior of A as the union of all μ -open sets contained A, i.e., $i_{\mu}(A) = \bigcup \{A \subset X : U \subset A \text{ and } U \in \mu\}$ similarly, we can define closure of A as intersection of all μ -closed sets containing A, i.e., $c_{\mu}(A) =$ $\bigcap \{A \subset X : U \subset A \text{ and } U^c \in \mu\}$. Denote M_{μ} the union of all μ -open sets in a GTS (X, μ) . Let X be a nonempty set. A hereditary class \mathcal{H} of X, if $A \in \mathcal{H}$ and $B \subset A$ then $B \in \mathcal{H}$. A generalized topological spaces (X, μ) with a hereditary class \mathcal{H} is call the triple (X, μ, \mathcal{H}) a hereditary Generalized Topological Spaces [3], denoted by HGTS. A.Csaszar [3] defined local function in hereditary generalized topological spaces and constructed a new generalized topology μ^* . For each $A \subset X$, $A^*(\mathcal{H}, \mu) = \{x \in X : A \cap M \notin \mathcal{H} \text{ for every } dx \in X : A \cap M \notin \mathcal{H} \}$ $M_i \in \mu$ such that $x \in G$. If there is no ambiguity then we write A^* in place of $A^*(\mathcal{H},\mu)$. According to the definition, $x \notin A^*$ if and only if there exists $x \in$ $G \in \mu$ such that $(A \cap M) \in \mathcal{H}$. For each $A \subset X$, define $c^*_{\mu}(A) = A \cup A^*(\mathcal{H}, \mu)$. \mathcal{H} said to be $\mu - codence[3]$ if $\mu \cap \mathcal{H} = \emptyset$ and is said to be strongly $\mu - codence$ if M and $N \in \mu$ and $M \cap N \in \mathcal{H}$, then $M \cap N = \emptyset$. A subset of A of (X,μ) is $\mu - \alpha - open[2](resp.\mu - semiopen, \mu - preopen, \mu - \beta - open)$ if $A \subset i_{\mu}c_{\mu}i_{\mu}(A)(resp.A \subset c_{\mu}i_{\mu}(A), A \subset i_{\mu}c_{\mu}(A), A \subset c_{\mu}i_{\mu}c_{\mu}(A)).$

Theorem 2.1 [3] Let μ be a GT in X and \mathcal{H} a hereditary class on X.

(1) $A \subseteq B \subseteq X$ implies $A^* \subseteq B^*$. (2) $A \subset A^*$ then $c_{\mu}(A) = A^* = c^*_{\mu}(A) = c^*_{\mu}(A^*)$. (3) $A^* \subseteq c^*(A) \subseteq cA$.

(4) If $H \in \mathcal{H}$, then $H^* = X - M_{\mu}$. (5) A^* is $\mu - closed$. (6) If F is $\mu - closed$, then $F^* \subseteq F$. (7) F is $\mu^* - closed$ iff $F^* \subseteq F$. (8) $X = X^*$ iff $\mu \cap \mathcal{H} = \emptyset$. (9) $M \in \mu$ implies $M \subseteq M^*$ iff $M, M' \in \mu, M \cap M' \in \mathcal{H}$ implies $M \cap M' = \emptyset$.

Theorem 2.2 [7] Let μ be a GT in X and \mathcal{H} a hereditary class on X. For $A \subseteq X$,

(1) $i^*(A) = X - c^*(X - A).$ (2) $c^*(A) = X - i^*(X - A).$ (3) $i(A) \subseteq i^*(A) \subseteq A.$

Definition 2.3 [4] Let (X, μ) generalized topological spaces and $\theta = \theta(\mu) \subset expX$ be defined by $A \in \theta$ iff $A \subset X$ and $x \in A$ implies the existence of $M \in \mu$ such that $x \in M \subset c_{\mu}M \subset A$. θ is a GT on X and $\theta \subset \mu$. Let define a set $c_{\theta}(A)$ composed of all points $x \in X$ such that $x \in M \in \mu$ implies $c_{\mu}M \cap A \neq \emptyset$.

Definition 2.4 [8] Let (X, μ, \mathcal{H}) be a HGTS in X. Let define the collection $\mathcal{H}(\theta) \subseteq P(X)$ by $A \in \mathcal{H}(\theta)$ iff for each $x \in A$, there is $M \in \mu$ such that $x \in M \subseteq c^*M \subseteq A$. The elements $\mathcal{H}(\theta)$ are called $\mathcal{H}(\theta)$ – open sets and the complements are called $\mathcal{H}(\theta)$ – closed sets. Every $\mathcal{H}(\theta)$ – open set is μ – open and $\mathcal{H}(\theta)$ also is a GT included in μ .

Definition 2.5 [8] Let (X, μ, \mathcal{H}) be a HGTS in X. The $\mathcal{H}(\theta)$ – closure of a subset A of X, denoted by $c_{\mathcal{H}(\theta)}A$, is the intersection of $\mathcal{H}(\theta)$ – closed sets including A. $\mathcal{H}(\theta)$ – interior of A, denoted by $i_{\mathcal{H}(\theta)}A$, the union of $\mathcal{H}(\theta)$ – open sets included in A. $c_{\mathcal{H}(\theta)}A = \{x \in X : c^*M \cap A \neq \emptyset \text{ for every } \mu$ – open set M containing x}.

Theorem 2.6 [8] Let (X, μ, \mathcal{H}) be a HGTS in X. For $A \subseteq X$,

(1) $c_{\mathcal{H}(\theta)} \emptyset = \emptyset$. (2) $c_{\mathcal{H}(\theta)}$ is monotonic. (3) $A \subseteq cA \subseteq c_{\mathcal{H}(\theta)}A$. (4) $c_{\mathcal{H}(\theta)}A$ is μ - closed. (5) A is $\mathcal{H}(\theta)$ - closed iff $c_{\mathcal{H}(\theta)}A = A$.

3 $\mathcal{H}(\theta)$ -Open Sets Modifications

In this section, we introduce the concepts of generalized topological spaces via hereditary class. **Definition 3.1** A subset A of an HGTS (X, μ, \mathcal{H}) is said to be

1. $\mathcal{H}(\theta) - preopen \ if \ A \subseteq i(c_{\mathcal{H}(\theta)}(A));$ 2. $\mathcal{H}(\theta) - semiopen \ if \ A \subseteq c(i_{\mathcal{H}(\theta)}(A));$ 3. $\mathcal{H}(\theta) - \alpha - open \ if \ A \subseteq i(c(i_{\mathcal{H}(\theta)}(A)));$ 4. $\mathcal{H}(\theta) - \beta - open \ if \ A \subseteq c(i(c_{\mathcal{H}(\theta)}(A))).$

Proposition 3.2 (i) Every $\mathcal{H}(\theta)$ – open set is $\mathcal{H}(\theta) - \alpha$ – open set. (ii) Every $\mathcal{H}(\theta) - \alpha$ – open set is $\mathcal{H}(\theta)$ – semiopen set. (iii) Every $\mathcal{H}(\theta)$ – semiopen set is $\mathcal{H}(\theta) - \beta$ – open set. (iv) Every $\mathcal{H}(\theta) - \alpha$ – open set is $\mathcal{H}(\theta)$ – preopen set. (v) Every $\mathcal{H}(\theta)$ – preopen set is $\mathcal{H}(\theta) - \beta$ – open set.

Proof: The proof follows from the definitions.

Remark 3.3 By this definition, we have the following diagram in which none of the implications is reversible as shown by examples stated below.

$$\begin{aligned} \mathcal{H}(\theta) - open & \longrightarrow \mathcal{H}(\theta) - \alpha - open & \longrightarrow \mathcal{H}(\theta) - semiopen \\ & \downarrow & & \downarrow \\ \mathcal{H}(\theta) - preopen & \longrightarrow \mathcal{H}(\theta) - \beta - open \end{aligned}$$

Example 3.4 Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{a\}, \{a, b\}\}$ and $\mathcal{H} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{a, c\}$ is a $\mathcal{H}(\theta) - \alpha$ - open set which is not $\mathcal{H}(\theta)$ - open. Since $i_{\mathcal{H}(\theta)}(A) = \{a, b\}, A \subseteq i(c(i_{\mathcal{H}(\theta)}(A))) = X$ and $i_{\mathcal{H}(\theta)}(A) = \{a, b\} \neq A$.

Example 3.5 Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{d\}, \{b, c, d\}\}$ and $\mathcal{H} = \{\emptyset, \{c\}\}$. Then $A = \{a, c\}$ is a $\mathcal{H}(\theta)$ – semiopen set which is not $\mathcal{H}(\theta) - \alpha$ – open since $i_{\mathcal{H}(\theta)}(A) = \{b, c, d\}$, $A \subseteq c(i_{\mathcal{H}(\theta)}(A)) = X$ and $A \nsubseteq i(c(i_{\mathcal{H}(\theta)}(A))) = \{b, c, d\}$.

Example 3.6 Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a, b\}, \{a, b, c\}\}$ and $\mathcal{H} = \{\emptyset, \{c\}\{d\}, \{c, d\}\}$. Then $A = \{a, c\}$ is a $\mathcal{H}(\theta)$ – preopen set which is not $\mathcal{H}(\theta) - \alpha$ – open since $c_{\mathcal{H}(\theta)}(A) = \{a, b, c\}$, $A \subseteq i(c_{\mathcal{H}(\theta)}(A)) = \{a, b, c\}$ and $A \nsubseteq i(c(i_{\mathcal{H}(\theta)}(A))) = \{b, c, d\}$.

Example 3.7 Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{a, c\}, \{a, c, d\}\}$ and $\mathcal{H} = \{\emptyset, \{b\}\}$. Then $A = \{a, b\}$ is a $\mathcal{H}(\theta) - \beta$ -open set which is not $\mathcal{H}(\theta)$ -preopen. Since $c_{\mathcal{H}(\theta)}(A) = \{a, c, d\}$, $A \subseteq i(c_{\mathcal{H}(\theta)}(A)) = X$ and $A \nsubseteq i(c_{\mathcal{H}(\theta)}(A)) = \{a, c, d\}$.

Example 3.8 Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a, b\}, \{a, b, c\}\}$ and $\mathcal{H} = \{\emptyset, \{c\}, \{d\}\}$. Then $A = \{a, c\}$ is a $\mathcal{H}(\theta) - \beta$ - open set which is not $\mathcal{H}(\theta) - \beta$ semiopen. Since $c_{\mathcal{H}(\theta)}(A) = \{a, b, c\}, A \subseteq i(c_{\mathcal{H}(\theta)}(A)) = X$ and $A \nsubseteq c(i_{\mathcal{H}(\theta)}(A)) = \{a, c, d\}$.

Theorem 3.9 Let (X, μ, \mathcal{H}) be a HGTS in X and $A \subset X$. A is $\mathcal{H}(\theta)$ – semiopen iff $c(A) = c(i_{\mathcal{H}(\theta)}(A))$.

Proof: Let A is $\mathcal{H}(\theta) - semiopen$. By this definition, we obtain $A \subseteq c(i_{\mathcal{H}(\theta)}(A))$. Therefore $c(A) \subseteq c(i_{\mathcal{H}(\theta)}(A))$ and $i_{\mathcal{H}(\theta)}(A) \subseteq A$ always hold. Hence, $c(A) = c(i_{\mathcal{H}(\theta)}(A))$. Conversely, since $A \subseteq c(A) = c(i_{\mathcal{H}(\theta)}(A))$, A is $\mathcal{H}(\theta) - semiopen$.

Theorem 3.10 Let (X, μ, \mathcal{H}) be a HGTS in X and $A \subset X$. A is $\mathcal{H}(\theta)$ – semiopen iff for some $U \in \mathcal{H}(\theta)$, $U \subseteq A \subseteq c(U)$.

Proof: Let A is $\mathcal{H}(\theta)$ – semiopen then $A \subseteq c(i_{\mathcal{H}(\theta)}(A))$. If we take $U = i_{\mathcal{H}(\theta)}(A)$, we can write $c(U) = c(i_{\mathcal{H}(\theta)}(A))$ and $U \subseteq A$. Hence, $U \subseteq A \subseteq c(U)$. Conversely, if we have for some $U \in \mathcal{H}(\theta)$, $U \subseteq A \subseteq c(U)$ then $A \subseteq c(U) = c(i_{\mathcal{H}(\theta)}(U)) \subseteq c(i_{\mathcal{H}(\theta)}(A))$ and hence A is $\mathcal{H}(\theta)$ – semiopen.

Theorem 3.11 Let (X, μ, \mathcal{H}) be a HGTS. Then, the family of $\mathcal{H}(\theta) - \alpha - open$ sets is a GT for X.

Proof: \emptyset is $\mathcal{H}(\theta) - \alpha - open$ set. Let A_i be a $\mathcal{H}(\theta) - \alpha - open$ set for each $i \in I$. Then, by definition of $\mathcal{H}(\theta) - \alpha - open$, we get

$$A_i \subseteq i(c(i_{\mathcal{H}(\theta)}(A_i))) \subseteq i(c(i_{\mathcal{H}(\theta)}(\bigcup_{i \in I} A_i))).$$

So we have $\bigcup_{i \in I} A_i \subseteq i(c(i_{\mathcal{H}(\theta)}(\bigcup_{i \in I} A_i))))$. This implies that $\bigcup_{i \in I} A_i$ is a $\mathcal{H}(\theta) - \alpha - open$ set.

This GT we denote $\mu^{\mathcal{H}(\theta)\alpha}$. Finite intersection of $\mathcal{H}(\theta) - \alpha - open$ sets is not $\mathcal{H}(\theta) - \alpha - open$ sets shown in the following example.

Example 3.12 Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$ and $\mathcal{H} = \{\emptyset, \{c\}\}$. Let $A = \{a, b\}$ and $B = \{b, c\}$ is a $\mathcal{H}(\theta) - \alpha$ - open sets. Hence, $A \cap B = \{b\}$ which is not $\mathcal{H}(\theta) - \alpha$ - open.

Theorem 3.13 Let M and N be subsets of an HGTS (X, μ, \mathcal{H}) , the following properties hold:

1. $M \in \mu^{\mathcal{H}(\theta)\alpha}$ iff $A \subseteq M \subseteq i(c(A))$ for every $\mathcal{H}(\theta)$ – open set A, 2. If $M \in \mu^{\mathcal{H}(\theta)\alpha}$ and $M \subseteq N \subseteq i(c(M))$, then $N \in \mu^{\mathcal{H}(\theta)\alpha}$.

Proof: (1) It is obvious.

(2) Let $M \in \mu^{\mathcal{H}(\theta)\alpha}$ set.Since,

$$N \subseteq i(c(M)) \subseteq i(c(i(c(i_{\mathcal{H}(\theta)}(M))))) \subseteq i(c(i_{\mathcal{H}(\theta)}(M))) \subseteq i(c(i_{\mathcal{H}(\theta)}(N))),$$

we have $N \in \mu^{\mathcal{H}(\theta)\alpha}$.

Theorem 3.14 Let (X, μ, \mathcal{H}) be a HGTS in X and $A \subseteq X$. A is $\mathcal{H}(\theta)$ – semiopen iff $c(A) = c(i_{\mathcal{H}(\theta)}(A))$.

Proof: A is be a $\mathcal{H}(\theta)$ – semiopen from here $A \subseteq c(i_{\mathcal{H}(\theta)}(A))$ and $c(A) \subseteq c(i_{\mathcal{H}(\theta)}(A))$. $c(i_{\mathcal{H}(\theta)}(A)) \subseteq c(A)$ is always true. Hence, $c(A) = c(i_{\mathcal{H}(\theta)}(A))$.

Conversely, $A \subseteq c(A) = c(i_{\mathcal{H}(\theta)}(A))$ hence A is $\mathcal{H}(\theta) - semiopen$.

Theorem 3.15 Let (X, μ, \mathcal{H}) be an HGTS, then the following hold:

 If A is H(θ) - preopen and B is H(θ) - α - open, then A ∩ B is a H(θ) - preopen.
If A is H(θ) - semiopen and B is H(θ) - α - open, then A ∩ B is a H(θ) - semiopen.
If A is H(θ) - β - open and B is H(θ) - α - open, then A ∩ B is a H(θ) - β - open.
If A is H(θ) - semiopen and B is H(θ) - pre - open, then A ∩ B is a H(θ) - β - open.

Proof: (1) Let A be $\mathcal{H}(\theta) - preopen$ and B be $\mathcal{H}(\theta) - \alpha - open$, then $A \subseteq i(c_{\mathcal{H}(\theta)}(A))$ and $B \subseteq i(c(i_{\mathcal{H}(\theta)}(B)))$. Then,

$$A \cap B = i(c_{\mathcal{H}(\theta)}(A)) \cap i(c(i_{\mathcal{H}(\theta)}(B))) = i(ic_{\mathcal{H}(\theta)}(A) \cap c(i_{\mathcal{H}(\theta)}(B)))$$
$$\subseteq i(c(c_{\mathcal{H}(\theta)}(A) \cap i_{\mathcal{H}(\theta)}(B)))$$
$$\subseteq i(c_{\mathcal{H}(\theta)}(c_{\mathcal{H}(\theta)}(A \cap B)))$$
$$= i(c_{\mathcal{H}(\theta)}(A \cap B)).$$

Thus, $(A \cap B)$ is a $\mathcal{H}(\theta) - preopen$.

(2) Let A be $\mathcal{H}(\theta)$ - semiopen and B be $\mathcal{H}(\theta) - \alpha$ - open, then $A \subseteq c(i_{\mathcal{H}(\theta)}(A))$ and $B \subseteq i(c(i_{\mathcal{H}(\theta)}(B)))$. Then,

$$A \cap B = c(i_{\mathcal{H}(\theta)}(A)) \cap i(c(i_{\mathcal{H}(\theta)}(B))) \subseteq c(i_{\mathcal{H}(\theta)}(A)) \cap c(c(i_{\mathcal{H}(\theta)}(B)))$$
$$\subseteq c(i_{\mathcal{H}(\theta)}(A \cap B)).$$

Thus $(A \cap B)$ is a $\mathcal{H}(\theta)$ – semiopen.

(3) Let A be $\mathcal{H}(\theta) - \beta - open$ and B be $\mathcal{H}(\theta) - \alpha - open$, then $A \subseteq c(i(c_{\mathcal{H}(\theta)}(A)))$ and $A \subseteq i(c(i_{\mathcal{H}(\theta)}(A)))$. This implies that

 $A \cap B \subseteq c(i(c_{\mathcal{H}(\theta)}(A))) \cap i(c(i_{\mathcal{H}(\theta)}(B))) \subseteq c(i(i_{\mathcal{H}(\theta)}(A) \cap ci_{\mathcal{H}(\theta)}(B)))$ $\subseteq c(i(c(c_{\mathcal{H}(\theta)}(A) \cap i_{\mathcal{H}(\theta)}(B))))$ $\subseteq c(i(c(c_{\mathcal{H}(\theta)}(A \cap B))))$ $\subseteq c(i(c_{\mathcal{H}(\theta)}(c_{\mathcal{H}(\theta)}(A \cap B))))$ $\subseteq c(i(c_{\mathcal{H}(\theta)}(A \cap B))).$

Thus, $(A \cap B)$ is a $\mathcal{H}(\theta) - \beta - open$.

(4) A is $\mathcal{H}(\theta)$ - semiopen then $A \subseteq c(i_{\mathcal{H}(\theta)}(A))$ and B is $\mathcal{H}(\theta)$ - preopen then $\mathcal{H}(\theta)$ - preopen if $A \subseteq i(c_{\mathcal{H}(\theta)}(A))$.

$$A \cap B \subseteq c(i_{\mathcal{H}(\theta)}(A)) \cap i(c_{\mathcal{H}(\theta)}(B)) = c(i(i_{\mathcal{H}(\theta)}(A))) \cap i(c_{\mathcal{H}(\theta)}(B))$$
$$\subseteq c(i(i_{\mathcal{H}(\theta)}(A)) \cap i(c_{\mathcal{H}(\theta)}(B)))$$
$$\subseteq c(i(i_{\mathcal{H}(\theta)}(A)) \cap c_{\mathcal{H}(\theta)}(B))$$
$$\subseteq c(i(c_{\mathcal{H}(\theta)}(A \cap B))))$$
$$\subseteq c(i(c_{\mathcal{H}(\theta)}(A \cap B))).$$

Thus, $(A \cap B)$ is a $\mathcal{H}(\theta) - \beta - open$.

Definition 3.16 [6] A spaces (X, μ) is μ -extremally disconnected if the closure of every μ -open set in X is μ -open.

Theorem 3.17 If a generalized topological spaces (X, μ) is extremally disconnected and $A, B \in \mathcal{H}(\theta)SO(X)$ then $A \cap B \in \mathcal{H}(\theta)SO(X)$.

Proof: Let $A, B \in \mathcal{H}(\theta)SO(X)$ then $A \cap B \subseteq c(i_{\mathcal{H}(\theta)}(A)) \cap c(i_{\mathcal{H}(\theta)}(B))$ and (X, μ) is extremally disconnected. Hence,

$$A \cap B \subseteq c(i_{\mathcal{H}(\theta)}(A)) \cap c(i_{\mathcal{H}(\theta)}(B)) \subseteq c(i_{\mathcal{H}(\theta)}(A) \cap c(i_{\mathcal{H}(\theta)}(B)))$$
$$\subseteq c(c(i_{\mathcal{H}(\theta)}(A) \cap i_{\mathcal{H}(\theta)}(B)))$$
$$= c(i_{\mathcal{H}(\theta)}(A \cap B).$$

(2)

Thus, $A \cap B \in \mathcal{H}(\theta)SO(X)$.

Theorem 3.18 Let (X, μ, \mathcal{H}) be a HGTS in X and $A \subset X$. If A is $\mathcal{H}(\theta) - \alpha$ - open and $\mathcal{H}(\theta)$ - preclosed then $c(i_{\mathcal{H}(\theta)}(A)) = i(c(i_{\mathcal{H}(\theta)}(A)))$.

Proof: Since, A is $\mathcal{H}(\theta) - \alpha$ -open and $\mathcal{H}(\theta)$ -preclosed we have $c(i_{\mathcal{H}(\theta)}(A)) \subseteq A \subseteq i(c(i_{\mathcal{H}(\theta)}(A)))$. $i(c(i_{\mathcal{H}(\theta)}(A))) \subseteq c(i_{\mathcal{H}(\theta)}(A))$ obvious. Therefore, $c(i_{\mathcal{H}(\theta)}(A)) = i(c(i_{\mathcal{H}(\theta)}(A)))$.

Theorem 3.19 Let (X, μ, \mathcal{H}) be a HGTS, the following are equivalent;

- 1. The $\mathcal{H}(\theta)$ closure of every $\mathcal{H}(\theta)$ open subset of X is $\mathcal{H}(\theta)$ open,
- 2. $c(i_{\mathcal{H}(\theta)}(A)) \subseteq i(c_{\mathcal{H}(\theta)}(A))$ for every subset A of X,
- 3. $\mathcal{H}(\theta)SO(X) \subseteq \mathcal{H}(\theta)PO(X),$
- 4. The $\mathcal{H}(\theta)$ closure of every $\mathcal{H}(\theta) \beta$ open set is $\mathcal{H}(\theta)$ open,
- 5. $\mathcal{H}(\theta) \beta open \subseteq H(\theta) preopen.$

Proof: (1) \Rightarrow (2) Assume that the $\mathcal{H}(\theta) - closure$ of every $\mathcal{H}(\theta) - open$ subset of X is $\mathcal{H}(\theta) - open$. Then, we have $c_{\mathcal{H}(\theta)}(i_{\mathcal{H}(\theta)}(A)) = c(i_{\mathcal{H}(\theta)}(A))$. Since, $c(i_{\mathcal{H}(\theta)}(A))$ is $\mathcal{H}(\theta) - open$ we have $c(i_{\mathcal{H}(\theta)}(A)) = i_{\mathcal{H}(\theta)}(c(i_{\mathcal{H}(\theta)}(A))) =$ $i(c(i_{\mathcal{H}(\theta)}(A))) = i(c(A)) \subseteq i(c_{\mathcal{H}(\theta)}(A))$. Thus, $c(i_{\mathcal{H}(\theta)}(A)) \subseteq i(c_{\mathcal{H}(\theta)}(A))$. $(2) \Rightarrow (3)$ Let $A \in \mathcal{H}(\theta)SO(X)$ then we have by $(2) A \subseteq c(i_{\mathcal{H}(\theta)}(A)) \subseteq$ $i(c_{\mathcal{H}(\theta)}(A))$. Therefore, $A \in \mathcal{H}(\theta)PO(X)$. $(3) \Rightarrow (4)$ Let $A \in \mathcal{H}(\theta)BO(X)$ then $A \subseteq c(i(c_{\mathcal{H}(\theta)}(A))) \subseteq c(i_{\mathcal{H}(\theta)}(c_{\mathcal{H}(\theta)}(A)))$ and $c_{\mathcal{H}(\theta)}(A) \subseteq c_{\mathcal{H}(\theta)}(c(i(c_{\mathcal{H}(\theta)}(A))))$. Thus, $c_{\mathcal{H}(\theta)}(A) \subseteq c(i_{\mathcal{H}(\theta)}(c_{\mathcal{H}(\theta)}(A)))$ and $c_{\mathcal{H}(\theta)}(A) \in \mathcal{H}(\theta)SO(X)$. By (3), $c_{\mathcal{H}(\theta)}(A) \in \mathcal{H}(\theta)PO(X)$. Hence, $c_{\mathcal{H}(\theta)}(A) \subseteq$ $i(c_{\mathcal{H}(\theta)}(c_{\mathcal{H}(\theta)}(A)))$ and $c_{\mathcal{H}(\theta)}(A) \subseteq i(c_{\mathcal{H}(\theta)}(A)) = i_{\mathcal{H}(\theta)}(c_{\mathcal{H}(\theta)}(A))$. Therefore, $c_{\mathcal{H}(\theta)}(A)$ is $\mathcal{H}(\theta) - open$. $(4) \Rightarrow (5)$ Let $A \in \mathcal{H}(\theta)BO(X)$. By (4), we get $c_{\mathcal{H}(\theta)}(A) = i(c_{\mathcal{H}(\theta)}(A))$. Hence, $A \subseteq c_{\mathcal{H}(\theta)}(A) = i(c_{\mathcal{H}(\theta)}(A))$ and therefore $A \in \mathcal{H}(\theta) - preopen$. (5) \Rightarrow (1) Let $A \in \mathcal{H}(\theta)PO(X)$. Then $c_{\mathcal{H}(\theta)}(A)$ is $\mathcal{H}(\theta)BO(X)$. By (5), we deduce $c_{\mathcal{H}(\theta)}(A)$ is $\mathcal{H}(\theta)PO(X)$. Since, $c_{\mathcal{H}(\theta)}(A) \subseteq i(c_{\mathcal{H}(\theta)}(c_{\mathcal{H}(\theta)}(A)))$ and $c_{\mathcal{H}(\theta)}(A) \subseteq i(c_{\mathcal{H}(\theta)}(A)) = i_{\mathcal{H}(\theta)}(c_{\mathcal{H}(\theta)}(A))$. Thus, $c_{\mathcal{H}(\theta)}(A)$ is $\mathcal{H}(\theta) - open$.

Definition 3.20 Let (X, μ, \mathcal{H}) be a HGTS. A subset A of X is said to be $\mathcal{H}(\theta)-pre-t-set(resp.\mathcal{H}(\theta)-\beta-t-set)$ if $i(c_{\mathcal{H}(\theta)}(A)) = i(A)(resp.c(i(c_{\mathcal{H}(\theta)}(A))) = i(A))$.

Theorem 3.21 Let (X, μ, \mathcal{H}) be a HGTS in X and $A \subseteq X$. A is regularopen iff $\mathcal{H}(\theta)$ – preopen and $\mathcal{H}(\theta)$ – pre – t – set.

Proof: Let A is regularopen. Then, A is open and $c(A) = c_{\mathcal{H}(\theta)}(A)$. Hence, we have $i(c_{\mathcal{H}(\theta)}(A)) = i(c(A)) = A$. Consequently $A \subseteq i(c_{\mathcal{H}(\theta)}(A))$, A is $\mathcal{H}(\theta)$ -preopen and A is open $i(c_{\mathcal{H}(\theta)}(A)) = i(A)$. Then, A is $\mathcal{H}(\theta)$ -pre-t-set. Conversely, let A is $\mathcal{H}(\theta)$ - preopen, $\mathcal{H}(\theta)$ - pre - t - set. Then, we get $A \subseteq i(c_{\mathcal{H}(\theta)}(A)) = i(A) = A$ then, A is open. This implies that, i(c(A)) = A. So we have A is regularopen.

Theorem 3.22 Let A and B be subsets of an HGTS (X, μ, \mathcal{H}) . If A and B are $\mathcal{H}(\theta) - pre - t - set$, then $A \cap B$ is a $H(\theta) - pre - t - set$.

Proof: We know that $A \cap B \subseteq c_{\mathcal{H}(\theta)}(A \cap B)$. Hence $i(A \cap B) \subseteq i(c_{\mathcal{H}(\theta)}(A \cap B)) \subseteq i(c_{\mathcal{H}(\theta)}(A) \cap c_{\mathcal{H}(\theta)}(B)) = i(c_{\mathcal{H}(\theta)}(A)) \cap i(c_{\mathcal{H}(\theta)}(B)) = i(A) \cap i(B) = i(A \cap B)$. Thus, $A \cap B$ is a $H(\theta) - pre - t - set$.

Proposition 3.23 Let (X, μ, \mathcal{H}) be a HGTS in X and $A \subseteq X$. A is $\mathcal{H}(\theta)$ – closed then $\mathcal{H}(\theta) - pre - t - set$.

Proof: Since A is $\mathcal{H}(\theta) - closed$, we have $A = c_{\mathcal{H}(\theta)}(A)$. Then, we can write $i(A) = i(c_{\mathcal{H}(\theta)}(A))$. Thus, A is $\mathcal{H}(\theta) - pre - t - set$.

Definition 3.24 A subset A of a GTS (X, μ, \mathcal{H}) is said to be

(i) $\mathcal{H}(\theta) - pre - B - set$ if there exist $M \in \mu$ and a $\mathcal{H}(\theta) - pre - t - set$ V in X such that $A = M \cap V$, (ii) $\mathcal{H}(\theta) - \beta - B - set$ if there exist $M \in \mu$ and a $\mathcal{H}(\theta) - \beta - t - set V$ in X

such that A = M.

Definition 3.25 Let (X, μ, \mathcal{H}) be an HGTS. A subset A of X is called a $\mathcal{H}(\theta)$ – semiclosed set if $i(c_{\mathcal{H}(\theta)}(A)) \subseteq A$.

Definition 3.26 A subset A of a GTS (X, μ, \mathcal{H}) is called a \mathcal{H}^* – set if $A = M \cap V$, where M is μ -open, V is $\mathcal{H}(\theta)$ – semiclosed and $i(c_{\mathcal{H}(\theta)}(V)) = c(i_{\mathcal{H}(\theta)}(V))$.

Theorem 3.27 For a subset A of an HGTS (X, μ, \mathcal{H}) , the following properties are equivalent:

- 1. A is open set,
- 2. A is α -open and a \mathcal{H}^* set,
- 3. A is preopen and a \mathcal{H}^* set,
- 4. A is $\mathcal{H}(\theta)$ preopen and a \mathcal{H}^* set,
- 5. A is $\mathcal{H}(\theta) \beta$ open and a \mathcal{H}^* set,
- 6. A is $\mathcal{H}(\theta)$ preopen and a $\mathcal{H}(\theta)$ pre B set,
- 7. A is $\mathcal{H}(\theta) \beta$ open and a $\mathcal{H}(\theta) \beta B$ set.

Proof: (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5): Since every open is a α -open, every α -open is a *preopen*, every *preopen* is a $\mathcal{H}(\theta) - preopen$, every $\mathcal{H}(\theta) - preopen$ is a $\mathcal{H}(\theta) - \beta - open$, proof is obvious.

(5) \Rightarrow (1): Let A be $\mathcal{H}(\theta) - \beta - open$ and a $\mathcal{H}^* - set$. Then we have $A \subseteq c(i(c_{\mathcal{H}(\theta)}(A)))$ and $A = M \cap V$, where M is μ -open, V is $\mathcal{H}(\theta) - semiclosed$ and $i(c_{\mathcal{H}(\theta)}(V)) = c(i_{\mathcal{H}(\theta)}(V))$. Therefore,

$$\begin{aligned} \mathbf{A} = \mathbf{A} \cap M &\subseteq c(i(c_{\mathcal{H}(\theta)}(A))) \cap M &= c(i(c_{\mathcal{H}(\theta)}(A \cap M))) \cap M \\ &\subseteq c(i(c_{\mathcal{H}(\theta)}(M))) \cap c(i(c_{\mathcal{H}(\theta)}(V))) \cap M \\ &= c(i(c_{\mathcal{H}(\theta)}(V))) \cap M \\ &= c(c(i_{\mathcal{H}(\theta)}(V))) \cap M = c(i_{\mathcal{H}(\theta)}(V)) \cap M \\ &= i(c_{\mathcal{H}(\theta)}(V)) \cap M = i(V) \cap M \subseteq V \cap M = A \end{aligned}$$

Hence, A is open set.

 $(1) \Rightarrow (6)$: is clear.

(6) \Rightarrow (1): Let A is $\mathcal{H}(\theta) - pre - open$ and a $\mathcal{H}(\theta) - pre - B - set$. Clearly, then there exist $M \in \mu$ and a $\mathcal{H}(\theta) - pre - t - set V$ in X such that $A = M \cap V$. Hence, V is a $\mathcal{H}(\theta) - pre - t - set$ then $i(V) = i(c_{\mathcal{H}(\theta)}(V))$. Since, A is $\mathcal{H}(\theta) - pre - open$,

$$A \subseteq i(c_{\mathcal{H}(\theta)}(A)) = i(c_{\mathcal{H}(\theta)}(M \cap V))$$

$$\subseteq i(c_{\mathcal{H}(\theta)}(M) \cap c_{\mathcal{H}(\theta)}(v))$$

$$= i(c_{\mathcal{H}(\theta)}(M)) \cap i(c_{\mathcal{H}(\theta)}(V))$$

$$= i(c_{\mathcal{H}(\theta)}(M)) \cap i(V).$$

Thus, $A = M \cap V \subseteq (M \cap V) \cap M \subseteq i(c_{\mathcal{H}(\theta)}(M)) \cap i(V) \cap M = M \cap i(V)$ and $A \subseteq M \cap i(V) \subseteq M \cap V = A$. Hence, $A = M \cap i(H)$ and A is open. (1) \Rightarrow (7): It is obvious. (7) \Rightarrow (1): Let A is $\mathcal{H}(\theta) - \beta - open$ and $\mathcal{H}(\theta) - \beta - B - set$. Then one can write following;

$$A \subseteq c(i(c_{\mathcal{H}(\theta)}(A))) = c(i(c_{\mathcal{H}(\theta)}(M \cap V)))$$

$$\subseteq c(i(c_{\mathcal{H}(\theta)}(M) \cap c_{\mathcal{H}(\theta)}(V)))$$

$$= c(i(c_{\mathcal{H}(\theta)}(M)) \cap i(c_{\mathcal{H}(\theta)}(V)))$$

$$= c(i(c_{\mathcal{H}(\theta)}(M))) \cap i(V).$$

Thus, $A = M \cap V \subseteq (M \cap V) \cap M \subseteq c(i(c_{\mathcal{H}(\theta)}(M))) \cap i(V) \cap M = M \cap i(V)$ and $A \subseteq M \cap i(V) \subseteq M \cap V = A$. Hence, $A = M \cap i(H)$ and A is open.

4 Decomposition of Continuity

Definition 4.1 Let (X, μ, \mathcal{H}) be an HGTS and a space (Y, λ) is GT. A function $f : (X, \mu, \mathcal{H}) \to (Y, \lambda)$ is said to be;

- 1. α continuous if $f^{-1}(G)$ is α -open for each $G \in \lambda$
- 2. Precontinuous if $f^{-1}(G)$ is preopen for each $G \in \lambda$
- 3. $\mathcal{H}(\theta)$ precontinuous if $f^{-1}(G)$ is $\mathcal{H}(\theta)$ preopen for each $G \in \lambda$
- 4. $\mathcal{H}(\theta) \beta \text{continuous if } f^{-1}(G) \text{ is } \mathcal{H}(\theta) \beta \text{open for each } G \in \lambda$
- 5. \mathcal{H}^* continuous if $f^{-1}(G)$ is \mathcal{H}^* set for each $G \in \lambda$
- 6. $\mathcal{H}(\theta) pre B continuous \text{ if } f^{-1}(G) \text{ is } \mathcal{H}(\theta) pre B set \text{ for each } G \in \lambda$
- 7. $\mathcal{H}(\theta) \beta B continuous \text{ if } f^{-1}(G) \text{ is } \mathcal{H}(\theta) pre B set \text{ for each } G \in \lambda$

Theorem 4.2 For a function $f : (X, \mu, \mathcal{H}) \to (Y, \lambda)$ the following properties are equivalent:

- 1. f is continuous,
- 2. f is α continuous and \mathcal{H}^* continuous,
- 3. f is Precontinuous and \mathcal{H}^* continuous,
- 4. f is $\mathcal{H}(\theta)$ precontinuous and \mathcal{H}^* continuous,
- 5. f is $\mathcal{H}(\theta) \beta continuous$ and $\mathcal{H}^* continuous$,
- 6. f is $\mathcal{H}(\theta)$ precontinuous and $\mathcal{H}(\theta)$ pre B continuous,
- 7. f is $\mathcal{H}(\theta) \beta continuous and \mathcal{H}(\theta) \beta B continuous.$

Proof: It follows from Theorem 3.27.

References

- A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96(4) (2002), 351-357.
- [2] A. Csaszar, Generalized open set in generalized topologies, Acta Math. Hungar., 106(1-2) (2005), 53-66.
- [3] A. Csaszar, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(2007), 29-36.
- [4] A. Csaszar, δ and θ modifications of generalized topologies, *Acta Math. Hungar.*, 120(3) (2008), 275-279.
- [5] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer Math. Monhly, 4(1990), 295-310.
- [6] R.D. Sarma, On extremally disconnected generalized topologies, Acta Math. Hungar., 134(4) (2012), 583-588.
- [7] Y.K. Kim and W.K. Min, On operations induced by hereditary classes on generalized topological spaces, Acta Math. Hungar., 137(1-2) (2012), 130-138.
- [8] Y.K. Kim and W.K. Min, H(θ)- open sets induced by hereditary classes on generalized topological spaces, Acta Math. Hungar., 93(3) (2014), 307-315.