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1 Introduction

The Banach contraction mapping is one of the landmark results of functional
analysis. It is widely known as the source of metric fixed point theory. Further
its importance lies in its vast applicability in various branches of mathematics.
Generalization of the above principle has been extensively investigated branch
of research. In particular, V.S. Bright in [1] introduce the following definition.

Definition 1.1. A mapping T : X → X, where (X, d) is a metric space, is
said to be a B-contraction if there exist positive real numbers α, β, γ such that
0 ≤ α + 2β + 2γ < 1 for all x, y ∈ X. The following inequality holds:

d(Tx, Ty) ≤ αd(x, y)+β[d(x, Tx)+d(y, Ty)]+γ[d(x, Ty)+d(y, Tx)] (1.1)
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Herein [1], it has been proved that ifX is complete, then every B-contraction
has a unique fixed point. On establishing this result there is no requirement
of continuity of the B-contraction. Also in [1] V. S. Bright introduced a gen-
eralization of B-contraction given by the following definition.

Definition 1.2. A mapping T : X → X, where (X, d) is a metric space, is
said to be weakly B-contractive or a weak B-contraction if for all x, y ∈ X
such that

d(Tx, Ty) ≤ αd(x, y) + β[d(x, Tx) + d(y, Ty)] + γ[d(x, Ty) + d(y, Tx)]

− ψ[d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)] (1.2)

where ψ : [0,∞)5 → [0,∞) is a continuous mapping such that 0 < α+2β+2γ ≤
1 and α, β and γ are non-zero positive numbers,
ψ(x, y, z, u, v) = 0 iff x = y = z = u = v = 0.

If we take ψ(x, y, z, u, v) = α1x+β1(y+z)+γ1(u+v), where 0 < α1+2β1+
2γ1 < 1 with α > α1, β > β1 and γ > γ1 and α1, β1 and γ1 are positive non-
zero real numbers, then (1.2) reduces to (1.1). That is, weak B-contraction is
a generalization of B-contraction.

In [1] V.S.Bright also proved that if X is complete, then every weak B-
contraction has a unique fixed point. The purpose of this paper is to present
the result in the context of ordered metric spaces.

2 Fixed Point Results: Nondecreasing Case

We start with the following definition.

Definition 2.1. If (X,≤) is a partially ordered set T : X → X we say that
T is monotonic nondecreasing if, for x, y ∈ X,

x ≤ y ⇒ Tx ≤ Ty.

This definition coincides with the notion of nondecreasing function in the
case where X = R and ′ ≤′ represents the usual total order in R. Now let us
present the following theorem.

Theorem 2.2. Let (X,≤) be a partially ordered set and suppose that there
exists a metric d in X such that (X, d) is a complete metric. Let T : X → X
be a continuous and nondecreasing such that

d(Tx, Ty) ≤ αd(x, y) + β[d(x, Tx) + d(y, Ty)] + γ[d(x, Ty) + d(y, Tx)]

− ψ[d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)] for x ≥ y (1.3)
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where ψ : [0,∞)5 → [0,∞) is a continuous mapping such that 0 < α + 2β +
2γ ≤ 1 and α, β, γ are nonzero positive real numbers, ψ(x, y, z, u, v) = 0 iff
x = y = z = u = v = 0. If there exist x0 ∈ X with x0 ≤ Tx0, then T has a
fixed point.

Proof: If Tx0 = x0, then the proof is finished. Suppose x0 < Tx0. Since
x0 < Tx0 and T is a nondecreasing mapping we obtain by induction that
x0 < Tx0 ≤ T 2x0 ≤ T 3x0 ≤ ... ≤ T nx0 ≤ T n+1x0 ≤ ... put xn+1 = Txn.
Then, for each integer n ≥ 1, from (1.3) and, as elements xn−1 and xn are
comparable, we get

d(xn+1, xn) = d(Txn, Txn−1)

≤ αd(xn, xn−1) + β[d(xn, Txn) + d(xn−1, Txn−1)]

+ γ[d(xn, Txn−1) + d(xn−1, Txn)]

− ψ[d(xn, xn−1), d(xn, Txn), d(xn−1, Txn−1), d(xn, Txn−1),

d(xn−1, Txn)]

= αd(xn, xn−1) + β[d(xn, xn+1) + d(xn−1, xn)] + γ[d(xn, xn)

+ d(xn−1, xn+1)]

− ψ[d(xn, xn−1), d(xn, xn+1), d(xn−1, xn), d(xn, xn), d(xn−1, xn+1)]

= αd(xn, xn−1) + β[d(xn, xn+1) + d(xn−1, xn)] + γ[d(xn−1, xn+1)]

− ψ[d(xn, xn−1), d(xn, xn+1), d(xn−1, xn), 0, d(xn−1, xn+1)] (1.4)

≤ αd(xn, xn−1) + β[d(xn, xn+1) + d(xn−1, xn)] + γd(xn−1, xn+1)

≤ αd(xn, xn−1) + β[d(xn, xn+1) + d(xn−1, xn)] + γ[(d(xn−1, xn)

+ d(xn, xn+1)]

≤ (α + β + γ)d(xn, xn−1) + (β + γ)d(xn, xn+1)

{1− (β + γ)}d(xn, xn+1) ≤ (α + β + γ)d(xn, xn−1)

d(xn, xn+1) ≤
α + β + γ

1− (β + γ)
d(xn, xn−1)

α + 2β + 2γ ≤ 1

⇒ α + β + γ ≤ 1− (β + γ)

⇒ α + β + γ

1− (β + γ)
≤ 1.

Therefore, d(xn, xn+1) ≤ d(xn, xn−1).
Thus {d(xn+1, xn)} is a decreasing sequence of nonnegative real numbers

and hence it is convergent.
Let

lim
n→∞

d(xn+1, xn) = r (1.5)
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Letting n→∞ in (1.4) we have

r ≤ αr + β(r + r) + γ lim
n→∞

d(xn−1, xn+1)

{1− (α + 2β)}r ≤ γ lim
n→∞

d(xn−1, xn+1)

≤ γ lim
n→∞

d(xn−1, xn) + γ lim
n→∞

d(xn, xn+1)

= γr + γr = 2γr

∴ {1− (α + 2β)}r ≤ γ lim
n→∞

d(xn−1, xn+1)

≤ 2γr

But α + 2β + 2γ ≤ 1⇒ 2γ ≤ 1− (α + 2β). Therefore

2γr ≤ γ lim
n→∞

d(xn−1, xn+1) ≤ 2γr.

That is, 2r ≤ limn→∞ d(xn−1, xn+1) ≤ 2r.

⇒ lim
n→∞

d(xn−1, xn+1) = 2r (1.6)

Again, making n → ∞ in (1.4) and using (1.5), (1.6) and the continuity of ψ
we obtain

r ≤ αr + 2βr + 2γr − ψ(r, r, r, 0, 2r)

{1− (α + 2β + 2γ)}r ≤ −ψ(r, r, r, 0, 2r) ≤ 0

α + 2β + 2γ ≤ 1

⇒ 0 ≤ 1− (α + 2β + 2γ)

Hence

0 ≤ −ψ(r, r, r, 0, 2r)

≤ 0

ψ(r, r, r, 0, 2r) = 0

By the definition of ψ, r = 0. Thus we have

lim
n→∞

d(xn+1, xn) = 0. (1.7)

In what follows, we will prove that {xn} is a cauchy sequence. If otherwise,
then there exists ε > 0 for which we can find subsequences {xm(k)} and {xn(k)}
of {xn} with n(k) > m(k) > k such that for any k

d(xn(k), xm(k)) ≥ ε. (1.8)
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Further, corresponding to m(k) we can choose n(k) in such a way that it is a
smallest integer with n(k) > m(k) and satisfying (1.8). Then

d(xn(k)−1, xm(k)) < ε. (1.9)

Using (1.8), (1.9) and triangle inequality, we have

ε ≤ d(xn(k), xm(k))

≤ d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k))

< d(xn(k), xn(k)−1) + ε.

Making k →∞ the above inequality and using (1.7) we get

lim
k→∞

d(xn(k), xm(k)) = lim
k→∞

d(xn(k)−1, xm(k)) = ε. (1.10)

Again, the triangular inequality gives us

d(xm(k), xn(k)−1) ≤ d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k)) + d(xn(k), xn(k)−1).

and

d(xm(k)−1, xn(k)) ≤ d(xm(k)−1, xm(k)) + d(xm(k), xn(k)).

letting k →∞ in the above two inequalities and using (1.7) and (1.10) we get

lim
k→∞

d(xm(k)−1, xn(k)) = ε. (1.11)

As n(k) > m(k) and xn(k)−1 and xm(k)−1 are comparable using (1.3) we have

ε ≤ d(xn(k), xm(k))

= d(Txn(k)−1, Txm(k)−1)

≤ αd(xn(k)−1, xm(k)−1) + β[d(xn(k)−1, Txn(k)−1) + d(xm(k)−1, Txm(k)−1)]

+ γ[d(xn(k)−1, Txm(k)−1) + d(xm(k)−1, Txn(k)−1)]

− ψ[d(xn(k)−1, xm(k)−1), d(xn(k)−1, xn(k)), d(xm(k)−1, xm(k)),

d(xn(k)−1, xm(k)), d(xm(k)−1, xn(k))]

= αd(xn(k)−1, xm(k)−1) + β[d(xn(k)−1, xn(k)) + d(xm(k)−1, xm(k))]

+ γ[d(xn(k)−1, xm(k)) + d(xm(k)−1, xn(k))]

− ψ[d(xn(k)−1, xm(k)−1), d(xn(k)−1, xn(k)), d(xm(k)−1, xm(k)),

d(xn(k)−1, xm(k)), d(xm(k)−1, xn(k))]

Making k →∞ taking into account (1.10), (1.11) and continuity of ψ we have

ε ≤ α lim
k→∞

d(xn(k)−1, xm(k)−1) + 2γε− ψ[ lim
k→∞

d(xn(k)−1, xm(k)−1), 0, 0, ε, ε]

ε ≤ α lim
k→∞

[d(xn(k)−1, xm(k)) + d(xm(k), xm(k)−1)] + 2γε

− ψ[ lim
k→∞

d(xn(k)−1, xm(k)−1), 0, 0, ε, ε]

≤ αε+ 2γε− ψ[ lim
k→∞

d(xn(k)−1, xm(k)−1), 0, 0, ε, ε]
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Now

d(xm(k), xn(k)−1) ≤ d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k)−1)

lim
k→∞

d(xm(k), xn(k)−1) ≤ lim
k→∞

d(xm(k)−1, xn(k)−1)

≤ lim
k→∞
{d(xm(k)−1, xm(k)) + d(xm(k), xn(k)−1)}

= lim
k→∞
{d(xm(k), xn(k)−1)} = ε (by(1.10))

Hence

ε ≤ lim
n→∞

d(xm(k)−1, xn(k)−1) ≤ ε

lim
k→∞

d(xm(k)−1, xn(k)−1) = ε

ε ≤ (α + 2γ)ε− ψ(ε, 0, 0, ε, ε)

ε ≤ ε− ψ(ε, 0, 0, ε, ε) < ε, since ψ ≥ 0

⇒ ψ(ε, 0, 0, ε, ε) = 0

⇒ ε = 0 a contradiction, since ε > 0

This proves that {xn} is a cauchy sequence. Since X is complete, there exist
z ∈ X such that limn→∞ xn = z. Moreover the continuity of T implies that
Tz = limn→∞ Txn = limn→∞ xn+1 = z and this proves that z is a fixed point
for T .

In what follows we prove that theorem (2.2), is still valid for T not neces-
sarily continuous, assuming the following hypothesis in X (which appears in
theorem 1 of [9]): If {xn} is a nondecreasing sequence in X such that xn → x
then xn ≤ x for all n ∈ N (1.12).

Theorem 2.3. Let (X,≤) be a partially ordered set and suppose that there
exist a metric d in X such that (X, d) is a complete metric space. Assume that
X satisfies (1.12). Let T : X → X be a nondecreasing mapping such that

d(Tx, Ty) ≤ αd(x, y) + β[d(x, Tx) + d(y, Ty)] + γ[d(x, Ty) + d(y, Tx)]

− ψ[d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)] for x ≥ y

where ψ : [0,∞)5 → [0,∞) is a continuous mapping such that 0 < α + 2β +
2γ ≤ 1 and α, β, γ are nonzero positive real numbers, ψ(x, y, z, u, v) = 0 iff
x = y = z = u = v = 0. If there exists x0 ∈ X with x0 ≤ Tx0, then T has a
fixed point.

Proof: Following the proof of theorem 2.2, we only have to check Tz = z.
As {xn} is a nondecreasing sequence in X and {xn} → z. Then the condition
(1.12) gives that xn ≤ z for every n ∈ N . The contractive condition (1.3) gives
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us

d(xn+1, T z) = d(Txn, T z)

≤ αd(xn, z) + β[d(xn, Txn) + d(z, Tz)] + γ[d(xn, T z) + d(z, Txn)]

− ψ[d(xn, z), d(xn, Txn), d(z, Tz), d(xn, T z), d(z, Txn)]

d(xn+1, T z) ≤ αd(xn, z) + β[d(xn, xn+1) + d(z, Tz)] + γ[d(xn, T z) + d(z, xn+1)]

− ψ[d(xn, z), d(xn, xn+1), d(z, Tz), d(xn, T z), d(z, xn+1)]

Letting n→∞ and using the continuity of ψ and d, we have

d(z, Tz) ≤ (β + γ)d(z, Tz)− ψ[d(z, z), d(z, z),

d(z, Tz), d(z, Tz), d(z, z)]

= (β + γ)d(z, Tz)− ψ[0, 0, d(z, Tz), d(z, Tz), 0]

d(z, Tz) ≤ d(z, Tz)− ψ[0, 0, d(z, Tz), d(z, Tz), 0] ≤ d(z, Tz)

ψ[0, 0, d(z, Tz), d(z, Tz), 0] = 0

⇒ d(z, Tz) = 0

⇒ Tz = z

This completes the proof.

Note 2.4. The above two theorems do not guarantee uniqueness of the fixed
point. The following example will illustrate it.

Let X = {(1, 0), (0, 1), (−2, 2), (2,−2)} ⊂ R2 and consider the usual order
(x, y) ≤ (z, t) iff x ≤ z and y ≤ t. Thus (X,≤) is a partially ordered set whose
different elements are not comparable. Besides, (X, d2) is a complete metric
space considering d2 the euclidean distance. The identity map T (x, y) = (x, y)
is trivially continuous and nondecreasing and condition (1.3) of theorem 2.2
is satisfied, since elements in X are only comparable to themselves. Moreover
(1, 0) ≤ T (1, 0) = (1, 0) and T has four fixed points.

Note 2.5. In order to have a unique fixed point for the above two theorems
(2.2) and (2.3) we add the condition (it appears in [10]) for x, y ∈ X there
exists a lower bound or upper bound.

In [9] it is proved that the above mentioned condition is equivalent to for
x, y ∈ X there exists z ∈ x which is comparable to x and y (1.13).

Theorem 2.6. Adding condition (1.13) to the hypothesis of theorem 2.2( or
theorem 2.3). We obtain the uniqueness of the fixed point of T .

Proof: Suppose that there exist z, y ∈ X which are fixed points of T . We
distinguish two cases:
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Case 1: If y is comparable to z, then T ny = y is comparable to T nz = z for
n = 1, 2, 3, ... and

d(y, z) = d(T ny, T nz) , y ≥ z

≤ αd(T n−1y, T n−1z) + β[d(T n−1y, T ny) + d(T n−1z, T nz)]

+ γ[d(T n−1y, T nz) + d(T n−1z, T ny)]

− ψ[d(T n−1y, T n−1z), d(T n−1y, T ny), d(T n−1z, T nz), d(T n−1y, T nz),

d(T n−1z, T ny)]

= αd(y, z) + β[y, y) + d(z, z)] + γ[d(y, z) + d(z, y)]

− ψ[d(y, z), d(y, y), d(z, z), d(y, z), d(z, y)]

= (α + 2γ)d(y, z)− ψ[d(y, z), 0, 0, d(y, z), d(z, y)]

d(y, z) ≤ d(y, z)− ψ[d(y, z), 0, 0, d(y, z), d(z, y)] ≤ d(y, z),

for ψ ≥ 0 and α + 2β + 2γ ≤ 1 and α, β, γ are non zero positive real numbers.

⇒ ψ[d(y, z), 0, 0, d(y, z), d(z, y)] = 0

⇒ d(y, z) = 0

⇒ y = z

Case 2: If y is not comparable to z then (by (1.13)) there exist x ∈ X compa-
rable to y and z. Monotonicity of T implies that T nx is comparable to T ny = y
and T nz = z for n = 1, 2, 3, ...

d(z, T nx) = d(T nz, T nx)

≤ αd(T n−1z, T n−1x) + β[d(T n−1z, T nz) + d(T n−1x, T nx)]

+ γ[d(T n−1z, T nx) + d(T n−1x, T nz)]

− ψ[d(T n−1z, T n−1x), d(T n−1z, T nz), d(T n−1x, T nx), d(T n−1z, T nx),

d(T n−1x, T nz)]

= αd(z, T n−1x) + β[d(z, z) + d(T n−1x, T nx)] + γ[d(z, T nx)

+ d(T n−1x, z)]

− ψ[d(z, T n−1x), d(z, z), d(T n−1x, T nx), d(z, T nx), d(T n−1x, z)]

= αd(z, T n−1x) + βd(T n−1x, T nx) + γ[d(z, T nx) + d(T n−1x, z)]

− ψ[d(z, T n−1x), 0, d(T n−1x, T nx), d(z, T nx), d(T n−1x, z)]

≤ αd(z, T n−1x) + β[d(T n−1x, z) + d(z, T nx)]

+ γ[d(z, T nx) + d(T n−1x, z)]

− ψ[d(z, T n−1x), 0, d(T n−1x, T nx), d(z, T nx), d(T n−1x, z)] (1.14)

∴ d(z, T nx) ≤ αd(z, T n−1x) + β[d(T n−1x, z) + d(z, T nx)]

+ γ[d(z, T nx) + d(T n−1x, z)]
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{1− (β + γ)}d(z, T nx) ≤ (α + β + γ)d(z, T n−1x)

d(z, T nx) ≤ α + β + γ

1− (β + γ)
d(z, T n−1x)

α + β + γ ≤ 1

⇒ α + β + γ ≤ 1− (β + γ)

α + β + γ

1− (β + γ)
≤ 1

Therefore d(z, T nx) ≤ d(z, T n−1x). This proves that the nonnegative decreas-
ing sequence {d(z, T nx)} is convergent. Put limn→∞ d(z, T nx) = r. Hence we
let n→∞ in (1.14) and taking into account the continuity of ψ we obtain

r ≤ αr + β(r + r) + γ(r + r)− ψ(r, 0, lim
n→∞

d(T n−1x, T nx), r, r)

= (α + 2β + 2γ)r − ψ(r, 0, lim
n→∞

d(T n−1x, T nx), r, r)

≤ r − ψ(r, 0, lim
n→∞

d(T n−1x, T nx), r, r) ≤ r

⇒ r ≤ r − ψ(r, 0, lim
n→∞

d(T n−1x, T nx), r, r) ≤ r

⇒ ψ(r, 0, limn→∞ d(T n−1x, T nx), r, r) = 0⇒ r = 0 and limn→∞ d(T n−1x, T nx) =
0. Consequently, limn→∞ d(z, T nx) = 0. Analogously, it can be proved that
limn→∞ d(y, T nx) = 0. Since limn→∞ d(z, T nx) = 0⇒ limn→∞ T

nx = z and
limn→∞ d(y, T nx) = 0 ⇒ limn→∞ T

nx = y. By uniqueness of limit gives us
y = z. This finishes the proof.

Remark 2.7. Notice that if (X,≤) is a totally ordered set, then the con-
dition (1.13) is obviously satisfied then we obtain the uniqueness of the fixed
point.

Remark 2.8. From the above theorem 2.2 or 2.3 or 2.6 as ψ : [0,∞)5 →
[0,∞) defined by ψ(x, y, z, u, v) = α1x+β1(y+z)+γ1(u+v) where α > α1 and
β > β1 and γ > γ1. Suppose that α1 + 2β1 + 2γ1 ∈ (0, 1) and α1, β1 and γ1 are
non zero positive real numbers. It follows that weak B-contraction changes into
B-contraction mapping and the condition (1.3) of theorem 2.2 can be rewritten
as

d(Tx, Ty) ≤ αd(x, y) + β[d(x, Tx) + d(y, Ty)] + γ[d(x, Ty) + d(y, Tx)]

for x ≥ y and 0 < α + 2β + 2γ < 1. (1.15)

and theorem 2.2 or 2.3 or 2.6 will be true for this particular case (1.15),
namely, B-contraction (1.1) in the context of ordered metric spaces.
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3 Fixed Point Results: Nonincreasing Case

In this section we present a fixed point theorem for weakly B-contractive map-
pings when the operator T is nonincreasing. We begin with the following
definition.

Definition 3.1. If (X,≤) is a partially ordered set and : X → X we say
that T is monotone nonincreasing if for x, y ∈ X, x ≤ y ⇒ Tx ≥ Ty.

The main result of the section is the following theorem:

Theorem 3.2. Let (X,≤) be a partially ordered set satisfying the condition
(1.13) and suppose that there exist a metric d in X such that (X, d) is a
complete metric space. Let T : X → X be a nonincreasing mapping such that

d(Tx, Ty) ≤ αd(x, y) + β[d(x, Tx) + d(y, Ty)] + γ[d(x, Ty) + d(y, Tx)]

− ψ[d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)] for x ≥ y (1.16)

where ψ : [0,∞)5 → [0,∞) is a continuous mapping such that 0 < α + 2β +
2γ ≤ 1 and α, β, γ are nonzero positive real numbers, ψ(x, y, z, u, v) = 0 iff
x = y = z = u = v = 0. If there exist x0 ∈ X with x0 ≤ Tx0 or x0 ≥ Tx0,
then inf{d(x, Tx) : x ∈ X} = 0 if, in addition, X is compact and T is
continuous, then T has a unique fixed point.

Proof: If Tx0 = x0 it is obvious that inf{d(x, Tx) : x ∈ X} = 0. Suppose
that x0 < Tx0(the same argument serves for x0 < Tx0). By virtue of T being
nonincreasing the consecutive terms of the sequence T n(x0) are comparable
using (1.16) we can obtain

d(T n+1x0, T
nx0) ≤ αd(T nx0, T

n−1x0) + β[d(T nx0, T
n+1x0) + d(T n−1x0, T

nx0)]

+ γ[d(T nx0, T
nx0) + d(T n−1x0, T

n+1x0)]

− ψ[d(T nx0, T
n−1x0), d(T nx0, T

n+1x0), d(T n−1x0, T
nx0),

d(T nx0, T
nx0), d(T n−1x0, T

n+1x0)]

= αd(T nx0, T
n−1x0) + β[d(T nx0, T

n+1x0) + d(T n−1x0, T
nx0)]

+ γ[d(T n−1x0, T
n+1x0)]

− ψ[d(T nx0, T
n−1x0), d(T nx0, T

n+1x0), d(T n−1x0, T
nx0), 0, d(T n−1x0, T

n+1x0)]

≤ αd(T nx0, T
n−1x0) + β[d(T nx0, T

n+1x0) + d(T n−1x0, T
nx0)]

+ γ[d(T n−1x0, T
n+1x0)]

Now

d(T n+1x0, T
nx0) ≤ αd(T nx0, T

n−1x0) + β[d(T nx0, T
n+1x0) + d(T n−1x0, T

nx0)]

+ γ[d(T n−1x0, T
nx0) + d(T nx0, T

n+1x0)]
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Hence

{1− (β + γ)}d(T n+1x0, T
nx0) ≤ (α + β + γ)d(T n−1x0, T

nx0)

d(T n+1x0, T
nx0) ≤

(α + β + γ)

{1− (β + γ)}
d(T n−1x0, T

nx0)

0 < α + 2β + 2γ ≤ 1, ⇒ 0 <
(α + β + γ)

{1− (β + γ)}
≤ 1.

Therefore d(T n+1x0, T
nx0) ≤ d(T nx0, T

n−1x0). From this inequality we have
that {d(T n+1x0, T

nx0)} is a nonnegative decreasing sequence with limit r ≥ 0.
Using a similar argument that in theorem 2.2 we can prove that r = 0. This
means that limn→∞ d(T n+1x0, T

nx0) = 0 and, consequently inf{d(x, Tx) : x ∈
X} = 0. This finishes the first part of our theorem.

Now suppose X is compact and T is continuous taking into the account
that the mapping

X → R+

x→ d(x, Tx)

is continuous (note that the mapping can be obtained as

X → X ×X → R+

x→ (x, Tx)→ d(x, Tx),

and obviously,this composition of mapping is continuous because T is contin-
uous) and since X is compact, we can find z ∈ X such that

d(z, Tz) = inf{d(x, Tx) : x ∈ X}.

Taking into account the first part of the theorem d(z, Tz) = 0 and therefore z
is a fixed point of T. The uniqueness of the fixed point is proved as in theorem
2.6.

Remark 3.3. An analogous result in the nonincreasing case cannot be ob-
tained using a similar reasoning in Theorem 2.2 as the proof of Cauchy char-
acter of sequence {xn} fails since xn(k)−1 and {xm(k)−1} cannot be comparable
if T is a nonincreasing operator.

4 Examples

In this section we present some examples which illustrate our results.

Example 4.1. Let X = {(0, 1), (1, 0), (1
2
, 1
2
)} ⊆ R2 with the euclidean dis-

tance d2. (X, d2) is obviously, a complete metric space. Moreover, we consider
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the order ≤ in X given by R = {(x, x) : x ∈ X}. Notice that the elements in
X are only comparable to themselves. Also we consider T : X → X is given
by

T (1, 0) = (0, 1)

T (0, 1) = (1, 0)

T

(
1

2
,
1

2

)
=

(
1

2
,
1

2

)
.

Obviously T is a continuous nondecreasing mapping and moreover (1
2
, 1
2
) ≤

T (1
2
, 1
2
). As the elements in X are only comparable to themselves, condition

(1.3) is obviously satisfied. Finally, theorem 2.2 gives as the existence of the
fixed point of T (which is obviously the point

(
1
2
, 1
2

)
). On the other hand,

d2(T (1, 0), T (0, 1)) ≤ αd2((1, 0), (0, 1)) + β[d2((1, 0), T (1, 0)) + d2((0, 1), T (0, 1))]

+ γ[d2((1, 0), T (0, 1)) + d2((0, 1), T (1, 0))]

− ψ[d2((1, 0), (0, 1)), d2((1, 0), T (1, 0)), d2((0, 0), T (0, 1)), 0, 0]

= α
√

2 + β(
√

2 +
√

2)− ψ[
√

2,
√

2,
√

2, 0, 0]

=
√

2(α + 2β)− ψ[
√

2,
√

2,
√

2, 0, 0]

But d2(T (1, 0), T (0, 1)) =
√

2,
√

2 ≤
√

2− ψ[
√

2,
√

2,
√

2, 0, 0].
But ψ[

√
2,
√

2,
√

2, 0, 0] > 0. This implies the operator T is not a weak B-
contraction. (See definition 1.2) consequently, this example cannot be treated
by the main result of [1] because herein definition 1.2 can only apply those
elements which are comparable..

Notice that in the example we obtain uniqueness of the fixed point and
condition (1.13) appearing theorem 2.6 is not satisfied here (X,≤). This proves
that condition (1.13) is not a necessary condition for the uniqueness of the fixed
point.

Example 4.2. Consider the space X with the euclidean distance d2 and
with order given by R = {(x, x) : x ∈ X}. Let X = {(0, 1), (1, 0), (1, 1)}. Let
T be the operator T : X → X defined by T (0, 1) = (0, 1), T (1, 1) = (0, 1) and
T (1, 0) = (1, 0). In what follows, we prove that T satisfies the condition (1.3)
namely x ≥ y appearing in theorem 2.2. In fact, for (0, 1) ≤ (1, 1)

d2(T (0, 1), T (1, 1)) = d2((0, 1), (0, 1) = 0

and, consequently, condition (1.3) satisfied also (0, 1) ≤ T (0, 1), theorem 2.2
says as that T has a fixed point(in this case, (0, 1) and (1, 0) are the fixed points
of T). Notice that, in this case, we have not uniqueness of the fixed point.
Further (X,≤) does satisfy condition (1.13) of theorem 2.6. On the other
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hand, the operator T is not a weak B-contraction, eventhough (1, 0) ≤ (1, 1).
For, d2(T (1, 0), T (1, 1)) = d2((1, 0), (0, 1)) =

√
2 and

d2((1, 0), (0, 1)) =
√

2

≤ αd2((1, 0), (1, 1)) + β[d2((1, 0), T (1, 0)) + d2((1, 1), T (1, 1))]

+ γ[d2((1, 0), T (1, 1)) + d((1, 1), T (1, 0))]

− ψ[d2((1, 0), (1, 1)), d2((1, 0), T (1, 0)), d2((1, 1), T (0, 1)),

d2((1, 0), T (0, 1)), d((1, 1), T (1, 0))]

i.e,
√

2 ≤ α + β + γ(
√

2 + 1)− ψ[1, 0, 1,
√

2, 1] (1.17)

i.e.,
√

2 ≤ α + β + γ +
√

2γ

⇒
√

2 ≤ α + β + γ

1− γ

If
α + β + γ

1− γ
< 1⇒ α+ β + 2γ < 1 which is true, since α, β and γ are non

zero positive real numbers(1.3).
Hence α + β + γ +

√
2γ < 1 and ψ ≥ 0, now by (1.16) ⇒⇐.

Hence T is not a weak B-contraction.

Note 4.3. Now we shall give some particular cases of B-contraction and
weakly B-contractions.
In B-contraction, if α = 0 and β = 0, then 2γ < 1 implies γ < 1

2
.

Therefore we get a C-contraction. That is

d(Tx, Ty) ≤ γ{d(x, Ty) + d(y, Tx)}

for all x, y ∈ X and γ ∈ [0, 1
2
). The corresponding weak C-Contraction is

d(Tx, Ty) ≤ γ{d(x, Ty) + d(y, Tx)} − ψ{d(x, Ty), d(y, Tx)}

for all x, y ∈ X and γ ∈ (0, 1
2
] and in particular

d(Tx, Ty) ≤ 1

2
{d(x, Ty) + d(y, Tx)} − ψ{d(x, Ty), d(y, Tx)}

where ψ : [0,∞)2 → [0,∞) is continuous such that ψ(x, y) = 0 if and only if
x = y = 0.

Hence whatever theorem proved in this paper with regard to weak B-
contraction is also true for the theorem on weak C-contraction in [8].
Further, many other contractions such as Kannan [6], weak S-contractions [9]
etc can follow from weak B-contraction see [1] and [7].
Thus weak B-contraction is considered to be the generalization of all other
so-called contractions.
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